

pyGRETA

[image: pyGRETA_logo]

python Generator of REnewable Time series and mAps

	Code developers

	Kais Siala, Houssame Houmy

	Documentation authors

	Kais Siala, Houssame Houmy, Sergio Alejandro Huezo Rodriguez

	Maintainers

	Kais Siala <kais.siala@tum.de>

	Organization

	Chair of Renewable and Sustainable Energy Systems [http://www.ens.ei.tum.de/en/homepage/], Technical University of Munich

	Version

	1.1.0

	Date

	Apr 20, 2022

	License

	The model code is licensed under the GNU General Public License 3.0 [http://www.gnu.org/licenses/gpl-3.0].
This documentation is licensed under a Creative Commons Attribution 4.0 International [http://creativecommons.org/licenses/by/4.0/] license.

Features

	Generation of potential maps and time series for user-defined regions within the globe

	Modeled technologies: onshore wind, offshore wind, PV, CSP (user-defined technology characteristics)

	Use of MERRA-2 reanalysis data, with the option to detect and correct outliers

	High resolution potential taking into account the land use suitability/availability, topography, bathymetry, slope, distance to urban areas, etc.

	Statistical reports with summaries (available area, maximum capacity, maximum energy output, etc.) for each user-defined region

	Generation of several time series for each technology and region, based on user’s preferences

	Possibility to combine the time series into one using linear regression to match given full-load hours and temporal fluctuations

Applications

This code is useful if:

	You want to estimate the theoretical and/or technical potential of an area, which you can define through a shapefile

	You want to obtain high resolution maps

	You want to define your own technology characteristics

	You want to generate time series for an area after excluding parts of it that are not suitable for renewable power plants

	You want to generate multiple time series for the same area (best site, upper 10%, median, lower 25%, etc.)

	You want to match historical capacity factors of countries from the IRENA database

You do not need to use the code (but you can) if:

	You do not need to exclude unsuitable areas - use the Global Solar Atlas [https://globalsolaratlas.info/] or Global Wind Atlas [https://globalwindatlas.info/]

	You only need time series for specific points - use other webtools such as Renewables.ninja [https://www.renewables.ninja/]

	You only need time series for administrative divisions (countries, NUTS-2, etc.), for which such data is readily available - see Renewables.ninja [https://www.renewables.ninja/] or EMHIRES [https://ec.europa.eu/jrc/en/scientific-tool/emhires]

Changes

version 1.0.1

	Fixed the syntax of the code in the PV module tracking (lib.physical_models).

	Edited the formatting of the PDF documentation.

	Edited the list of references.

version 1.0.0

This is the initial version.

Contents

User manual

These documents give a general overview and help you get started from the installation to your first running model.

	User manual
	Installation

	config.py
	Main configuration function

	User preferences

	Paths

	runme.py

	Recommended input sources
	Weather data from MERRA-2

	Raster of Mean Wind Speed

	Raster of land use

	Shapefile of the region of interest

	Shapefile of countries

	Shapefile of Exclusive Economic Zones (EEZ)

	Shapefile of Internal Waters

	Raster of topography / elevation data

	Raster of bathymetry

	Shapefile of protected areas

	Airports Coordinates

	Shapefiles from OSM data

	Raster of Settlement Footprint

	Shapefile of HydroLakes

	Shapefile of HydroRivers

	Data of Crop Production

	Data of Forestry Production

	Shapefile of Livestock density

	Recommended workflow
	Input raster maps

	Potential maps and reports

	Time series for quantiles and user-defined locations

	Regression

	Stratified time series

Mathematical documentation

Continue here if you want to understand the concept of the model.

	Theory
	Solar

	Wind

Technical documentation

Continue here if you want to understand in detail the model implementation.

	Implementation
	initialization.py

	input_maps.py

	potential.py

	time_series.py

	regression.py

	correction_functions.py

	spatial_functions.py

	physical_models.py

	util.py

Dependencies

A list of the used libraries is available in the environment file:

name: ren_ts
channels:
 - defaults
 - conda-forge
dependencies:
 - pip=19.3.1
 - pip:
 - pyproj=2.4.1
 - fiona=1.8.4
 - gdal=2.3.3
 - geopandas=0.4.1
 - h5netcdf=0.7.4
 - hdf5storage=0.1.15
 - numpy=1.17.3
 - pandas=0.25.2
 - pyomo=5.6.7
 - python=3.7.5
 - python-dateutil=2.8.1
 - psutil=5.6.5
 - rasterio=1.0.21
 - scipy=1.3.1
 - shapely=1.6.4
prefix: D:\Miniconda3\envs\ren_ts

Bibliography

	Bibliography

Indices and tables

	Index

	Module Index

	Search Page

User manual

Installation

Note

We assume that you are familiar with git [https://git-scm.com/downloads] and conda [https://docs.conda.io/projects/conda/en/latest/user-guide/install/download.html].

First, clone the git repository in a directory of your choice using a Command Prompt window:

$ ~\directory-of-my-choice> git clone https://github.com/tum-ens/pyGRETA.git

We recommend using conda and installing the environment from the file ren_ts_new.yml that you can find in the repository. In the Command Prompt window, type:

$ cd pyGRETA\env\
$ conda env create -f ren_ts_new.yml

Then activate the environment:

$ conda activate ren_ts_new

In the folder code, you will find multiple files:

	File

	Description

	config.py

	used for configuration, see below.

	runme.py

	main file, which will be run later using python runme.py.

	lib\initialization.py

	used for initialization.

	lib\input_maps.py

	used to generate input maps for the scope.

	lib\potential.py

	contains functions related to the potential estimation.

	lib\time_series.py

	contains functions related to the generation of time series.

	lib\regression.py

	contains functions related to the regression.

	lib\spatial_functions.py

	contains helping functions related to maps, coordinates and indices.

	lib\physical_models.py

	contains helping functions for the physical/technological modeling.

	lib\correction_functions.py

	contains helping functions for data correction/cleaning.

	lib\util.py

	contains minor helping functions and the necessary python libraries to imported.

config.py

This file contains the user preferences, the links to the input files, and the paths where the outputs should be saved.
The paths are initialized in a way that follows a particular folder hierarchy. However, you can change the hierarchy as you wish.

	Main configuration function

	User preferences

	Paths

runme.py

runme.py calls the main functions of the code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

	import lib.correction_functions as cf
import lib.spatial_functions as sf
import lib.input_maps as im
import lib.potential as pl
from lib.log import logger
import initialization as ii
import lib.time_series as ts
import lib.regression as rg
import os
import psutil

if __name__ == "__main__":

 # logger.setLevel(logging.DEBUG) # Comment out to get more information on the console

 if psutil.virtual_memory().available > 50*10**9: # Check if memory size is large enough for multiprocessing
 multiprocessing = True
 else:
 multiprocessing = False
 logger.info('Multiprocessing: ' + str(multiprocessing))

 configs = sorted(os.listdir('../configs'))
 for config in configs: # Iterate over all config files for each country in folder 'configs'

 try: # only interrupt current country run in case of failure
 logger.info('Started: ' + str(config))

 paths, param = ii.initialization(config) # Initialize for each country with the corresponding config defined in folder 'configs'

 im.downloadGWA(paths, param) # Download wind speed data from Global Wind Atlas
 im.generate_maps_for_scope(paths, param, multiprocessing) # Generate input raster maps

 cf.generate_wind_correction(paths, param)

 for tech in param["technology"]:
 logger.info("Tech: " + tech)
 if tech == "Biomass":
 im.generate_livestock(paths,param)
 pl.generate_biomass_production(paths, param, tech)
 pl.report_biomass_potentials(paths, param, tech)

 else:
 # Generate potential maps and reports
 pl.calculate_full_load_hours(paths, param, tech, multiprocessing)
 pl.mask_potential_maps(paths, param, tech)
 pl.weight_potential_maps(paths, param, tech)
 pl.report_potentials(paths, param, tech)

 # Generate time series
 # ts.find_representative_locations(paths, param, tech)
 # ts.generate_time_series_for_representative_locations(paths, param, tech)
 # ts.generate_time_series_for_specific_locations(paths, param, tech)

 # for tech in param["technology"]:
 # logger.info("Tech: " + tech)

 # Generate regression coefficients for FLH and TS model matching
 # rg.get_regression_coefficients(paths, param, tech)

 # Generate times series for combinations of technologies and locations
 # ts.generate_time_series_for_regions(paths, param, tech)
 except Exception:
 logger.info("General exception noted!", exc_info=True)

Recommended input sources

For a list of GIS data sources, check this wikipedia article [https://en.wikipedia.org/wiki/List_of_GIS_data_sources].

Weather data from MERRA-2

The most important inputs within this model are the weather time series.
These are taken from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2),
which is the latest atmospheric reanalysis of the modern satellite era produced by NASA’s Global Modeling and
Assimilation Office (GMAO) [5]. The parameters taken from MERRA-2 are:

	Global Horizontal Irradiance (GHI): Downward shortwave radiation received by a surface horizontal to the ground
(SWGDN in MERRA-2 nomenclature).

	Top of the Atmosphere Irradiance (TOA): Downward shortwave radiation at the top of the atmosphere
(SWTDN in MERRA-2 nomenclature).

	Air temperature 2 meters above the ground (T2M).

	Northward wind velocity at 50 meters (V50M).

	Eastward wind velocity at 50 meters (U50M).

The GHI and TOA data are time-averaged hourly values given in W/m while T2M data are instantaneous
values in Kelvin. V50M and U50M are instantaneous hourly values given in m/s.

The spatial arrangement of the data consists of a global horizontal grid structure with a resolution of 576 points in
the longitudinal direction and 361 points in the latitudinal direction, resulting in pixels of 5/8° longitude
and 1/2° latitude [1].

It is possible to download MERRA-2 dataset for the whole globe or just for a subset of your region of interest.
Depending on the MERRA_coverage parameter in config.py, the script can accept both datasets. Note that downloading
the coverage for the whole globe is easier but will require a significant amount of space on your drive (coverage
of the whole globe requires 13.6 Gb for one year).

In both cases, please follow these instructions to download the MERRA-2 dataset:

	In order to download MERRA-2 data using the FTP server, you first need to create an Eathdata account (more on that on their website [https://disc.gsfc.nasa.gov/data-access]).

	Navigate to the link for the FTP sever here [https://disc.gsfc.nasa.gov/daac-bin/FTPSubset2.pl].

	In Data Product, choose tavg1_2d_slv_NX and select the Parameters T2M, U50M, V50M to downaload the temperature and the wind speed datasets.

	In Spatial Search, enter the coordinates of the bounding box around your region of interest or leave the default values for the whole globe.
To avoid problems at the edge of the MERRA-2 cells, use the following set of formulas:

\[\begin{split}\begin{align*}
 minLat &= \left\lfloor\dfrac{s+0.25}{0.5}\right\rfloor \cdot 0.5 - \epsilon \\
 maxLat &= \left\lceil\dfrac{n-0.25}{0.5}\right\rceil \cdot 0.5 + \epsilon \\
 minLon &= \left\lfloor\dfrac{w+0.3125}{0.625}\right\rfloor \cdot 0.625 - \epsilon \\
 maxLon &= \left\lceil\dfrac{e-0.3125}{0.625}\right\rceil \cdot 0.625 + \epsilon
\end{align*}\end{split}\]

where [s n w e] are the southern, northern, western, and eastern bounds of
the region of interest, which you can read from the shapefile properties in
a GIS software, and \(\\epsilon\) a small number.

	In Temporal Order Option, choose the year(s) of interest.

	Leave the other fields unchanged (no time subsets, no regridding, and NetCDF4 for the output file format).

	Repeat the steps 4-6 for the Data Product tavg1_2d_rad_Nx, for which you select the Parameters SWGDN and SWTDN, the surface incoming shortwave flux and the top of the atmosphere incoming shortwave flux.

	Follow the instructions in the website [https://disc.gsfc.nasa.gov/data-access] to actually download the NetCDF4 files from the urls listed in the text files you obtained.

If you follow these steps to download the data for the year 2015, you will obtain 730 NetCDF files, one for each day of the year and for each data product.

Raster of Mean Wind Speed

High resolution (250m) country-wise rasters of mean wind speed from Global wind atlas website will be automatically downloaded by the tool.

Raster of land use

Another important input for this model is the land use type.
A land use map is useful in the sense that other parameters can be associated with different landuse types, namely:

	Urban areas

	Ross coefficients

	Hellmann coefficients

	Albedo

	Suitability

	Installation cost

	etc.

For each land use type, we can assign a value for these parameters which affect
the calculations for solar power and wind speed correction.
The global land use raster for which lib.input_maps.generate_landuse has been written can be downloaded from the ESA CCI [http://maps.elie.ucl.ac.be/CCI/viewer/download.php] website.
However, this new version requires additional data processing.
The spatial resolution of the land use raster downloaded is 300m, but the resolution used in the model is 250m.
So the landuse raster should be resampled in a GIS software. QGIS can be used easily for doing this.

Shapefile of the region of interest

The strength of the tool relies on its versatility, since it can be used for any user-defined regions provided in
a shapefile. If you are interested in administrative divisions, you may consider downloading the shapefiles from
the website of the Global Administration Divisions (GADM) [https://gadm.org/download_country_v3.html]. You can also create your
own shapefiles using a GIS software.

Warning

In any case, you need to have at least one attribute called NAME_SHORT containing
a string (array of characters) designating each sub-region.

Shapefile of countries

A shapefile of all the countries of the world is also needed. It can be downloaded again from GADM [https://gadm.org/download_world.html].
The attribute “GID_0” contains the ISO 3166-1 Alpha-3 codes of the countries, and is currently hard coded in the script.

Warning

If you want to use another source or other code names, you need to edit the name of the attribute “GID_0” and
the dictionary dict_countries.csv.

Shapefile of Exclusive Economic Zones (EEZ)

A shapefile of the maritime boundaries of all countries is available at the website of the Flanders Marine Institute (VLIZ) [http://www.vliz.be/en/imis?dasid=5465&doiid=312].
It is used to identify offshore areas.

Shapefile of Internal Waters

A shapefile of the internal waters boundaries of all countries is available at the website of the Flanders Marine Institute (VLIZ) [http://www.vliz.be/en/imis?module=dataset&dasid=5469].
It is used to identify offshore areas.

Raster of topography / elevation data

A high resolution raster (15 arcsec = 1/240° longitude and 1/240° latitude) made of 24 tiles can be downloaded from viewfinder panoramas [http://viewfinderpanoramas.org/Coverage%20map%20viewfinderpanoramas_org15.htm].
Multiple files will be downloaded from this source. They can all be merged and resampled to the resolution of the model (250m)
using QGIS, similar to the landuse raster.

Raster of bathymetry

A high resolution raster (60 arcsec) of bathymetry can be downloaded from the website of the National Oceanic and Atmospheric Administration (NOAA) [https://ngdc.noaa.gov/mgg/global/global.html]. The one used in the database is ETOPO1 Ice Surface, cell-registered.

Shapefile of protected areas

Any database for protected areas can be used with this tool, in particular the World Database on Protected Areas
published by the International Union for Conservation of Nature (IUCN) [https://www.protectedplanet.net/].
The shapefile has many attributes, but only one is used in the tool: “IUCN_CAT”. If another database is used, an
equivalent attribute with the different categories of the protection has to be used and config.py has to be updated accordingly.

Airports Coordinates

List of airports around the world can be downloaded as a csv file from open data (openflights) [https://openflights.org/data.html].

Shapefiles from OSM data

Open Street Map data can be downloaded as shapefiles from geofabrik [https://download.geofabrik.de/].
The shapefiles for roads, railways and landuse are used in this model.
These shapefiles have many attributes, but only one is used in the tool: “fclass”.
For roads shapefile, the “fclass” types “Motoways, motorways_link, primary, primary-link, secondary, secondary-link, trunk, trunk-link” are filtered prior to using the model.
For railways shapefile, no filtering is necessary.
For landuse shapefile, the “fclass” types “commercial, industrial, quarry, military, park, recreation_ground” are filtered prior to using the model.
If another exclusion criteria is used, config.py has to be updated accordingly.

Raster of Settlement Footprint

A high resolution raster (0.32 arcsec or 10m) of World settlement footprint can be downloaded from open source [https://figshare.com/articles/dataset/World_Settlement_Footprint_WSF_2015/10048412]. The downloaded multiple files need to be
merged and resampled to the desired resolution (250m) of the model prior to the run.

Shapefile of HydroLakes

Any database for Lakes can be used with this tool, in particular from HydroSheds [https://www.hydrosheds.org/page/hydrolakes].
No preprocessing is necessary for this dataset.

Shapefile of HydroRivers

Any database for Rivers can be used with this tool, in particular from HydroSheds [https://www.hydrosheds.org/page/hydrorivers].
No preprocessing is necessary for this dataset.

Data of Crop Production

Annual crop production data of all countries in the world can be downloaded from the website of Food and Agriculture Organization of United States
(FAOSTAT) [https://www.fao.org/faostat/en/#data/QCL]. While downloading, the latest year and “Production Quantity” should be selected as filters.

Data of Forestry Production

Annual forestry production data of all countries in the world can be downloaded from the website of Food and Agriculture Organization of United States
(FAOSTAT) [https://www.fao.org/faostat/en/#data/FO]. While downloading, the latest year and “Production Quantity” should be selected as filters.

Shapefile of Livestock density

Any dataset for Livestock density can be used with this tool, in particular the rasters created from the data of Food and Agriculture Organization of United States
for various animals (FAO GLW3) [https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1236449/].
These files are available at high resolution (5 arc-minutes). The model can read these high resolution rasters and resample them to the resolution of the model.

Recommended workflow

The script is designed to be modular and split into four main modules: lib.input_maps, lib.potential, lib.time_series, and lib.regression.

Warning

The outputs of each module serve as inputs to the following module. Therefore, the user will have to run the script sequentially.

The recommended use cases of each module will be presented in the order in which the user will have to run them.

	Input raster maps

	Potential maps and reports

	Time series for quantiles and user-defined locations

	Regression

	Stratified time series

The use cases associated with each module with examples of their outputs are presented below.

It is recommended to thoroughly read through the configuration file config.py and modify the input paths and
computation parameters before starting the runme.py script.
Once the configuration file is set, open the runme.py file to define what use case you will be using the script for.

Input raster maps

The lib.input_maps module is used to generate data (mostly raster maps, but also arrays in MAT files) for the spatial scope defined by the user. These data sets include:

	Weather data

	Land and sea masking

	Bathymetry

	Topography

	Slope

	Area

	Land use and buffer masking

	Protected areas and their buffer masking

	Boarder Buffer masking

	Airports and buffer masking

	Roads Buffer masking

	Railway lines Buffer masking

	OSM defined areas like mining, military zones Buffer masking

	Settlement regions Buffer masking

	HydroLakes Buffer masking

	HydroRivers Buffer masking

	Livestock density

All these maps are needed before the potential or time series modules can be used for a specific spatial scope.

[image: Land Use Raster Map - Australia]
Land Use Raster Map - Australia

[image: Topography Raster Map - Australia]
Topography Raster Map - Australia

Potential maps and reports

The lib.potential module serves to generate potential raster maps for all four technologies supported by the script.
This module generates a Full-Load Hour (FLH) raster map, masking and masked rasters for unsuitable and protected areas,
and a weighting and weighted raster used for energy and power potential calculations.
It also generates a CSV report containing metrics for each subregion:

	Available number of pixels, before and after masking

	Available area in in km²

	FLH mean, median, max, min values, before and after masking

	FLH standard deviation after masking

	Power Potential in GW, before and after weighting

	Energy Potential in TWh in total, after weighting, and after masking and weighting

	Sorted sample of FLH values for each region

[image: FLH of solar PV - Australia]
FLH of solar PV - Australia

[image: FLH of onshore wind - Australia]
FLH of onshore wind - Australia

[image: FLH of solar PV after masking - Australia]
FLH of solar PV after masking - Australia

[image: Energy output of onshore wind after weighting - Australia]
Energy output of onshore wind after weighting - Australia

Sample of potential report:

	Region

	Available area (km²)

	Region A

	4315.7

	Region B

	2128.3

	Region C

	561.3

	Region D

	100953.1

	Region E

	10.2

	Region F

	2829.8

	FLH mean

	FLH max

	FLH min

	Masked FLH mean

	Masked FLH max

	Masked FLH min

	Power potential (GW)

	Energy potential (TWh)

	1638.4

	1686.3

	1578.0

	1644.3

	1686.3

	1589.7

	6.5

	10.8

	1682.9

	1699.7

	1601.6

	1684.2

	1695.0

	1613.7

	1.4

	2.4

	1849.7

	1853.4

	1833.8

	1849.6

	1853.3

	1840.8

	0.9

	1.7

	2017.6

	2090.5

	1986.8

	2018.0

	2086.1

	1986.8

	183.7

	369.8

	1856.8

	1857.1

	1856.5

	1856.8

	1857.1

	1856.5

	0.0

	0.0

	1729.5

	1772.2

	1659.1

	1731.4

	1772.2

	1659.1

	4.8

	8.3

Time series for quantiles and user-defined locations

The lib.time_series module allows to generate time series for quantiles as well as user-defined locations based on
the FLH raster maps generated in the previously mentioned module.
It is therefore important for the FLH raster maps to be generated first, in order to locate the quantiles.
However, generating time series for user-defined locations does not require the potential maps to be generated beforehand.

[image: _images/AustraliaQ50WindvsSolar.png]
Wind Onshore and Solar PV capacity factor time series for quantile 50 - Australia

Regression

Once a set of time series for different settings (hub heights for wind technologies, orientations for solar PV) is generated,
the lib.regression module allows the user to find a combination of settings and quantiles in order to match a known FLH value
and a given (typical) time series. The output is a set of regression coefficients that should be multiplied with the time series.

[image: _images/regression_graphic.png]
Regression Coefficients - Process example Region A

Stratified time series

Part of the lib.time_series module, the lib.time_series.generate_time_series_for_regions function reads the regression coefficients and
the generated time series, and combines them into user-defined modes (combinations of quantiles) and combos (combinations hub height or orientations settings).

[image: _images/Stratified_TS_diagram.png]
Stratified Time Series - Process example Region A

Example:
- Graphic of Modes and Combos

Main configuration function

	
config.configuration(config_file)

	This function is the main configuration function that calls all the other modules in the code.

	Return (paths, param)

	The dictionary paths containing all the paths to inputs and outputs, and the dictionary param containing all the user preferences.

	Return type

	tuple(dict, dict)

	
config.general_settings()

	This function creates and initializes the dictionaries param and paths. It also creates global variables for the root folder root,
and the system-dependent file separator fs.

	Return (paths, param)

	The empty dictionary paths, and the dictionary param including some general information.

	Return type

	tuple(dict, dict)

Note

Both param and paths will be updated in the code after running the function config.configuration.

Note

root points to the directory that contains all the inputs and outputs.
All the paths will be defined relatively to the root, which is located in a relative position to the current folder.

The code differentiates between the geographic scope and the subregions of interest.
You can run the first part of the script runme.py once and save results for the whole scope, and then repeat the second part using different subregions within the scope.

	
config.scope_paths_and_parameters(paths, param, config_file)

	This function defines the path of the geographic scope of the output spatial_scope and of the subregions of interest subregions.
Both paths should point to shapefiles of polygons or multipolygons.
It also associates two name tags for them, respectively region_name and subregions_name, which define the names of output folders.

	For spatial_scope, only the bounding box around all the features matters.
Example: In case of Europe, whether a shapefile of Europe as one multipolygon, or as a set of multiple features (countries, states, etc.) is used, does not make a difference.
Potential maps (theoretical and technical) will be later generated for the whole scope of the bounding box.

	For subregions, the shapes of the individual features matter, but not their scope.
For each individual feature that lies within the scope, you can later generate a summary report and time series.
The shapefile of subregions does not have to have the same bounding box as spatial_scope.
In case it is larger, features that lie completely outside the scope will be ignored, whereas those that lie partly inside it will be cropped using the bounding box
of spatial_scope. In case it is smaller, all features are used with no modification.

	year defines the year of the input data.

	technology defines the list of technologies that you are interested in.
Currently, four technologies are defined: onshore wind 'WindOn', offshore wind 'WindOff', photovoltaics 'PV', concentrated solar power 'CSP'.

	Parameters

	
	paths (dict) – Dictionary including the paths.

	param (dict) – Dictionary including the user preferences.

	Return (paths, param)

	The updated dictionaries paths and param.

	Return type

	tuple(dict, dict)

Note

We recommend using a name tag that describes the scope of the bounding box of the regions of interest.
For example, 'Europe' and 'Europe_without_Switzerland' will actually lead to the same output for the first part of the code.

Note

As of version 1.1.0, it is possible to use different technologies in the same run, but not the same technology with different settings.

Warning

If you intend to use the wind correction feature relying on the Global Wind Atlas [https://globalwindatlas.info/],
it is recommended that spatial_scope covers all the countries that you are interested in,
because the correction is done on a country-level. Also, you have to download the data from the Global Wind Atlas
for each country that lies within the scope, even partially, and put it in the corresponding location.

User preferences

	
config.computation_parameters(param)

	This function defines parameters related to the processing:

	nproc is an integer that limits the number of parallel processes (some modules in potential.py and time_series.py allow parallel processing).

	CPU_limit is a boolean parameter that sets the level of priority for all processes in the multiprocessesing.
Leave True if you plan on using the computer while FLH and TS are being computed, False for fastest computation time.

	Parameters

	param (dict) – Dictionary including the user preferences.

	Return param

	The updated dictionary param.

	Return type

	dict

	
config.resolution_parameters(param)

	This function defines the resolution of weather data (low resolution), and the desired resolution of output rasters (high resolution).
Both are numpy arrays with two numbers. The first number is the resolution in the vertical dimension (in degrees of latitude),
the second is for the horizontal dimension (in degrees of longitude).

	Parameters

	param (dict) – Dictionary including the user preferences.

	Return param

	The updated dictionary param.

	Return type

	dict

Note

As of version 1.1.0, these settings should not be changed. Only MERRA-2 data can be used in the tool.
Its spatial resolution is 0.5° of latitudes and 0.625° of longitudes. The high resolution is 15 arcsec in both directions.

	
config.csp_parameters(param)

	This function sets the parameters for concentrated solar power in the dictionary csp inside param:

	resource is a dictionary including the parameters related to the resource potential:

	clearness_correction is a factor that will be multiplied with the clearness index matrix to correct it. If no correction is required, leave it equal to 1.

	technical is a dictionary including the parameters related to the module:

	T_avg_HTF is the average temperature in °C of the heat transfer fluid between the inlet and outlet of the solar field.

	loss_coeff is the the heat loss coefficient in W/(m²K), which does not depend on wind speed (relevant for physical_models.calc_CF_solar).

	loss_coeff_wind is the the heat loss coefficient in W/(m²K(m/s)^0.6), which depends on wind speed (relevant for physical_models.calc_CF_solar).

	Flow_coeff is a factor smaller than 1 for the heat transfer to the HTF (Flow or heat removal factor).

	AbRe_ratio is the ratio between the receiver area and the concentrator aperture.

	Wind_cutoff is the maximum wind speed for effective tracking in m/s.

	mask is a dictionary including the parameters related to the masking:

	slope is the threshold slope in percent. Areas with a larger slope are excluded.

	lu_suitability is a numpy array of values 0 (unsuitable) or 1 (suitable). It has the same size as the array of land use types.

	pa_suitability is a numpy array of values 0 (unsuitable) or 1 (suitable). It has the same size as the array of protected area categories.

	weight is a dictionary including the parameters related to the weighting:

	lu_availability is a numpy array of values between 0 (completely not available) and 1 (completely available). It has the same size as the array of land use types.

	pa_availability is a numpy array of values between 0 (completely not available) and 1 (completely available). It has the same size as the array of protected area categories.

	power_density is the power density of CSP projects in MW/m².

	f_performance is a number smaller than 1, taking into account all the other losses from the CSP module until the AC substation.

	Parameters

	param (dict) – Dictionary including the user preferences.

	Return param

	The updated dictionary param.

	Return type

	dict

	
config.file_saving_options(param)

	This function sets some options for saving files.

	savetiff is a boolean that determines whether tif rasters for the potentials are saved (True), or whether only mat files are saved (False).
The latter are saved in any case.

	report_sampling is an integer that sets the sample size for the sorted FLH values per region (relevant for potential.reporting).

	Parameters

	param (dict) – Dictionary including the user preferences.

	Return param

	The updated dictionary param.

	Return type

	dict

	
config.landuse_parameters(param)

	
This function sets the land use parameters in the dictionary landuse inside param:

	type is a numpy array of integers that associates a number to each land use type.

	type_urban is the number associated to urban areas (useful for input_maps.generate_buffered_population).

	Ross_coeff is a numpy array of Ross coefficients associated to each land use type (relevant for physical_models.loss).

	albedo is a numpy array of albedo coefficients between 0 and 1 associated to each land use type (relevant for reflected irradiation, see physical_models.calc_CF_solar).

	hellmann is a numpy array of Hellmann coefficients associated to each land use type (relevant for correction_functions.generate_wind_correction).

	param param

	Dictionary including the user preferences.

	type param

	dict

	return param

	The updated dictionary param.

	rtype

	dict

	# Landuse reclassification
	# 0 No data
10 Cropland, rain-fed
11 Herbaceous cover
12 Tree or shrub cover
20 Cropland, irrigated or post-flooding
30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)
40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)
50 Tree cover, broadleaved, evergreen, closed to open (>15%)
60 Tree cover, broadleaved, deciduous, closed to open (>15%)
61 Tree cover, broadleaved, deciduous, closed (>40%)
62 Tree cover, broadleaved, deciduous, open (15-40%)
70 Tree cover, needleleaved, evergreen, closed to open (>15%)
71 Tree cover, needleleaved, evergreen, closed (>40%)
72 Tree cover, needleleaved, evergreen, open (15-40%)
80 Tree cover, needleleaved, deciduous, closed to open (>15%)
81 Tree cover, needleleaved, deciduous, closed (>40%)
82 Tree cover, needleleaved, deciduous, open (15-40%)
90 Tree cover, mixed leaf type (broadleaved and needleleaved)
100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)
110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)
120 Shrubland
121 Shrubland evergreen
122 Shrubland deciduous
130 Grassland
140 Lichens and mosses
150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)
151 Sparse tree (<15%)
152 Sparse shrub (<15%)
153 Sparse herbaceous cover (<15%)
160 Tree cover, flooded, fresh or brakish water
170 Tree cover, flooded, saline water
180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water
190 Urban areas
200 Bare areas
201 Consolidated bare areas
202 Unconsolidated bare areas
210 Water bodies
220 Permanent snow and ice

	
config.offshore_wind_paramters(param)

	This function sets the parameters for offshore wind in the dictionary windoff inside param:

	resource is a dictionary including the parameters related to the resource potential:

	res_correction is either 1 (perform a redistribution of wind speed when increasing the resolution) or 0 (repeat the same value from the low resolution data).
It is relevant for correction_functions.generate_wind_correction.

	technical is a dictionary including the parameters related to the wind turbine:

	w_in is the cut-in speed in m/s.

	w_r is the rated wind speed in m/s.

	w_off is the cut-off wind speed in m/s.

	P_r is the rated power output in MW.

	hub_height is the hub height in m.

	mask is a dictionary including the parameters related to the masking:

	depth is the threshold depth in meter (negative number). Areas that are deeper are excluded.

	pa_suitability is a numpy array of values 0 (unsuitable) or 1 (suitable). It has the same size as the array of protected area categories.

	weight is a dictionary including the parameters related to the weighting:

	power_density is the power density of offshore wind projects in MW/m².

	f_performance is a number smaller than 1, taking into account all the other losses from the turbine generator until the AC substation.

	Parameters

	param (dict) – Dictionary including the user preferences.

	Return param

	The updated dictionary param.

	Return type

	dict

	
config.onshore_wind_parameters(param)

	This function sets the parameters for onshore wind in the dictionary windon inside param:

	resource is a dictionary including the parameters related to the resource potential:

	res_correction is either 1 (perform a redistribution of wind speed when increasing the resolution) or 0 (repeat the same value from the low resolution data). It is relevant for correction_functions.generate_wind_correction.

	topo_correction is either 1 (perform a correction of wind speed based on the altitude and the Global Wind Atlas) or 0 (no correction based on altitude).

	topo_weight is only relevant if topo_correction = 1. It defines how to weight the correction factors of each country. There are three options: 'none' (all countries have the same weight), 'size' (larger countries have a higher weight), or 'capacity' (countries with a higher installed capacity according to IRENA have a higher weight).

	technical is a dictionary including the parameters related to the wind turbine:

	w_in is the cut-in speed in m/s.

	w_r is the rated wind speed in m/s.

	w_off is the cut-off wind speed in m/s.

	P_r is the rated power output in MW.

	hub_height is the hub height in m.

	mask is a dictionary including the parameters related to the masking:

	slope is the threshold slope in percent. Areas with a larger slope are excluded.

	lu_suitability is a numpy array of values 0 (unsuitable) or 1 (suitable). It has the same size as the array of land use types.

	pa_suitability is a numpy array of values 0 (unsuitable) or 1 (suitable). It has the same size as the array of protected area categories.

	buffer_pixel_amount is an integer that defines the number of pixels making a buffer of exclusion around urban areas.

	weight is a dictionary including the parameters related to the weighting:

	lu_availability is a numpy array of values between 0 (completely not available) and 1 (completely available). It has the same size as the array of land use types.

	pa_availability is a numpy array of values between 0 (completely not available) and 1 (completely available). It has the same size as the array of protected area categories.

	power_density is the power density of onshore wind projects in MW/m².

	f_performance is a number smaller than 1, taking into account all the other losses from the turbine generator until the AC substation.

	Parameters

	param (dict) – Dictionary including the user preferences.

	Return param

	The updated dictionary param.

	Return type

	dict

	
config.protected_areas_parameters(param)

	This function sets the parameters for protected areas in the dictionary protected_areas inside param:

	type is a numpy array of integers that associates a number to each protection type.

	IUCN_Category is an array of strings with names associated to each protection type (for your information).

	Parameters

	param (dict) – Dictionary including the user preferences.

	Return param

	The updated dictionary param.

	Return type

	dict

	
config.time_series_parameters(param)

	This function determines the time series that will be created.

	quantiles is a list of floats between 100 and 0. Within each subregion, the FLH values will be sorted,
and points with FLH values at a certain quantile will be later selected. The time series will be created for these points.
The value 100 corresponds to the maximum, 50 to the median, and 0 to the minimum.

	regression is a dictionary of options for regression.regression_coefficients:

	solver is the name of the solver for the regression.

	WindOn is a dictionary containing a list of hub heights that will be considered in the regression, with a name tag for the list.

	WindOff is a dictionary containing a list of hub heights that will be considered in the regression, with a name tag for the list.

	PV is a dictionary containing a list of orientations that will be considered in the regression, with a name tag for the list.

	CSP is a dictionary containing a list of settings that will be considered in the regression, with a name tag for the list.

If all the available settings should be used, you can leave an empty list.

	modes is a dictionary that groups the quantiles and assigns names for each subgroup. You can define the groups as you wish.
If you want to use all the quantiles in one group without splitting them in subgroups, you can write:

param["modes"] = {"all": param["quantiles"]}

	combo is a dictionary of options for time_series.generate_stratified_timeseries:

	WindOn is a dictionary containing the different combinations of hub heights for which stratified time series should be generated, with a name tag for each list.

	WindOff is a dictionary containing the different combinations of hub heights for which stratified time series should be generated, with a name tag for each list.

	PV is a dictionary containing the different combinations of orientations for which stratified time series should be generated, with a name tag for each list.

	CSP is a dictionary containing the different combinations of settings for which stratified time series should be generated, with a name tag for each list.

If all the available settings should be used, you can leave an empty list.

	Parameters

	param (dict) – Dictionary including the user preferences.

	Return param

	The updated dictionary param.

	Return type

	dict

	
config.weather_data_parameters(param)

	This function defines the coverage of the weather data MERRA_coverage, and how outliers should be corrected using MERRA_correction:

	MERRA_coverage: If you have downloaded the MERRA-2 data for the world, enter the name tag 'World'. The code will later search for the data in the corresponding folder.
It is possible to download the MERRA-2 just for the geographic scope of the analysis. In that case, enter another name tag (we recommend using the same one as the spatial scope).

	MERRA_correction: MERRA-2 contains some outliers, especially in the wind data. MERRA_correction sets the threshold of the relative distance between the yearly mean of the data point
to the yearly mean of its neighbors.

	Parameters

	param (dict) – Dictionary including the user preferences.

	Return param

	The updated dictionary param.

	Return type

	dict

Paths

	
config.emhires_input_paths(paths, tech)

	This function defines the path to the EMHIRES input file for each technology (only 'WindOn',
'WindOff', and 'PV' are supported by EMHIRES).

	Parameters

	
	paths (dict) – Dictionary including the paths.

	param (dict) – Dictionary including the user preferences.

	tech (string) – Name of the technology.

	Return paths

	The updated dictionary paths.

	Return type

	dict

	
config.global_maps_input_paths(paths, param)

	This function defines the paths where the global maps are saved:

	LU_global for the land use raster

	Topo_tiles for the topography tiles (rasters)

	Pop_global for the global population raster

	Bathym_global for the bathymetry raster

	Protected for the shapefile of protected areas

	GWA for the country data retrieved from the Global Wind Atlas (missing the country code, which will be filled in a for-loop in :mod:correction_functions.calc_gwa_correction)

	Countries for the shapefiles of countries

	EEZ_global for the shapefile of exclusive economic zones of countries

	Parameters

	paths (dict) – Dictionary including the paths.

	Return paths

	The updated dictionary paths.

	Return type

	dict

	
config.irena_paths(paths, param)

	This function defines the paths for the IRENA inputs and outputs:

	IRENA is a csv file containing statistics for all countries and technologies for a specific year, created using a query tool of IRENA.

	IRENA_dict is a csv file to convert the code names of countries from the IRENA database to the database of the shapefile of countries.

	IRENA_summary is a csv file with a summary of renewable energy statistics for the countries within the scope.

	Parameters

	
	paths (dict) – Dictionary including the paths.

	param (dict) – Dictionary including the user preferences.

	Return paths

	The updated dictionary paths.

	Return type

	dict

	
config.local_maps_paths(paths, param)

	This function defines the paths where the local maps will be saved:

	LAND for the raster of land areas within the scope

	EEZ for the raster of sea areas within the scope

	SUB for the raster of areas covered by subregions (both land and sea) within the scope

	LU for the land use raster within the scope

	BATH for the bathymetry raster within the scope

	TOPO for the topography raster within the scope

	SLOPE for the slope raster within the scope

	PA for the raster of protected areas within the scope

	POP for the population raster within the scope

	BUFFER for the raster of population buffer areas within the scope

	CORR_GWA for correction factors based on the Global Wind Atlas (mat file)

	CORR_ON for the onshore wind correction factors (raster)

	CORR_OFF for the offshore wind correction factors (raster)

	AREA for the area per pixel in m² (mat file)

	Parameters

	
	paths (dict) – Dictionary including the paths.

	param (dict) – Dictionary including the user preferences.

	Return paths

	The updated dictionary paths.

	Return type

	dict

	
config.output_folders(paths, param)

	This function defines the paths to multiple output folders:

	region is the main output folder.

	weather_data is the output folder for the weather data of the spatial scope.

	local_maps is the output folder for the local maps of the spatial scope.

	potential is the output folder for the ressource and technical potential maps.

	regional_analysis is the output folder for the time series and the report of the subregions.

	regression_in is the folder where the regression parameters (FLH, fitting time series) are saved.

	regression_out is the output folder for the regression results.

All the folders are created at the beginning of the calculation, if they do not already exist,

	Parameters

	
	paths (dict) – Dictionary including the paths.

	param (dict) – Dictionary including the user preferences.

	Return paths

	The updated dictionary paths.

	Return type

	dict

	
config.potential_output_paths(paths, param, tech)

	This function defines the paths of the files that will be saved in the folder for the potential outputs:

	FLH is the file with the full-load hours for all pixels within the scope (mat file).

	mask is the file with the suitable pixels within the scope (mat file).

	FLH_mask is the file with the full-load hours for the suitable pixels within the scope (mat file).

	weight is the power density for all the pixels in the scope (mat file).

	FLH_weight is the potential energy output for all the pixels in the scope (mat file).

	Parameters

	
	paths (dict) – Dictionary including the paths.

	param (dict) – Dictionary including the user preferences.

	tech (string) – Name of the technology.

	Return paths

	The updated dictionary paths.

	Return type

	dict

	
config.regional_analysis_output_paths(paths, param, tech)

	This function defines the paths of the files that will be saved in the folder for the regional analysis outputs:

	Locations is the shapefile of points that correspond to the selected quantiles in each subregion, for which the time series will be generated.

	TS is the csv file with the time series for all subregions and quantiles.

	Region_Stats is the csv file with the summary report for all subregions.

	Sorted_FLH is the mat file with the sorted samples of FLH for each subregion.

	Regression_coefficients is the path format for a csv files containing the regression coefficients found by the solver

	Regression_TS is the path format for a csv files with the regression resulting timeseries for the tech and settings

	Parameters

	
	paths (dict) – Dictionary including the paths.

	param (dict) – Dictionary including the user preferences.

	tech (string) – Name of the technology.

	Return paths

	The updated dictionary paths.

	Return type

	dict

	
config.regression_paths(paths, param, tech)

	This function defines the paths for the regression parameters:

	FLH_regression is a csv file containing FLH statistics for the subregions and the four technologies for a specific year, based on the previously created IRENA_summary.

	TS_regression is a csv file containing time series to be match for each subregion and technology, based on EMHIRES time series if available.

	Parameters

	paths (dict) – Dictionary including the paths.

	Return paths

	The updated dictionary paths.

	Return type

	dict

	
config.weather_input_folder(paths, param)

	This function defines the path MERRA_IN where the MERRA-2 data is saved. It depends on the coverage of the data and the year.

	Parameters

	
	paths (dict) – Dictionary including the paths.

	param (dict) – Dictionary including the user preferences.

	Return paths

	The updated dictionary paths.

	Return type

	dict

	
config.weather_output_paths(paths, param)

	This function defines the paths to weather filesfor a specific year:

	W50M is the file for the wind speed at 50m in m/s.

	CLEARNESS is the file for the clearness index, e.g. the ratio between total ground horizontal radiation and total top-of-the-atmosphere horizontal radiation.

	T2M is the file for the temperature at 2m in Kelvin.

	Parameters

	
	paths (dict) – Dictionary including the paths.

	param (dict) – Dictionary including the user preferences.

	Return paths

	The updated dictionary paths.

	Return type

	dict

Theory

Solar

Solar Angles

While the output power of the Sun is usually considered as a constant, the
amount of power arriving at the Earth’s surface varies according to the time,
location, weather, and relative position of the Earth with respect to the Sun.
Besides, the available data needed for a solar power calculation is usually given
for a horizontal surface and most of the PV systems are placed in a tilted
position. Therefore, it is necessary to calculate a set of parameters describing
the Sun’s relative position with respect to the position of the system being
irradiated.
These parameters are calculated for points located at the center of every
pixel (with high resolution) within the extension under analysis and for every
hour of the year.

Declination Angle \(\delta\)

This angle varies during the year due to the tilt of the
Earth’s axis, which is 23.45° tilted, so the declination ranges between -23.4°
and 23.45° through the year. The declination could be interpreted as the latitude
where the Sun’s rays perpendicularly strike the Earth’s surface at solar noon.
This value is the same for all the locations within the globe for a given day and
is calculated as follows [11]:

\[\delta=\arcsin\left(0.3978 \sin\Big(\frac{2\pi N}{365.25}-1.4+0.0355 \sin\Big(\frac{2\pi N}{365.25}-0.0489\Big)\Big)\right)\]

where N is the day of the year.

Solar Time

The time is important to define the position of the Sun in the
sky. However, it is easier to use the time if it is converted into solar time. To
do so, a few corrections are needed. The equation of time is an empirical
equation which corrects the error caused by the axial tilt of the Earth and the
eccentricity of its orbit [11]:

\[EOT=-0.128 \sin\Big(\frac{360}{365.25}N-2.8\Big)-0.165 \sin\Big(\frac{720}{365.25}N +19.7\Big)\]

When the time is given in GMT, as it is for this model, it is also necessary to
take into account the longitude of the location, hence the time correction:

\[TC=EOT+longitude/15\]

where the factor 15 accounts for the geographical span of each time zone (15°
of longitude). With this correction, the local solar time is calculated as:

\[LST = T_{GMT}+TC\]

where LST is the local solar time. An even more apporpriate time measure
for solar calculations is the hour angle \(\omega\) This converts hours into
degrees which indicate how the Sun moves in the sky relatively to the Earth,
where the solar noon is 0°, the anlges after the noon positive, and before
the noon negative.

\[\omega=15 (LST-12)\]

Another important quantity is the duration of the day, which is delimited by the
sunrise and the sunset. The sunrise and sunset have the same value, however,
the sunrise is considered negative and the sunset positive. They depend on the
day of the year and the location on the Earth (denoted by the declination and
the latitude \(\phi\) respectively) and they are calculated for a horizontal surface as
follows [7]:

\[\omega_s=\arccos(-\tan\phi\tan\delta)\]

Due to self-shading, a tilted plane might be exposed to different sunrise and
sunset’s values. Also, if the plane is not facing the equator, the sunrise and
sunset angles will be numerically different for such surfaces. The following
equations consider this orientation changes for the sunrise and sunset values of
a tilted plane [7].

\[a=\frac{\cos\phi}{\tan\beta}+\sin\phi\]

\[b=\tan\delta\cos\phi\cos\gamma-\frac{\sin\phi}{\tan\beta}\]

\[\omega_s'=\cos\Big[\frac{ab\pm\sin\gamma\sqrt{a^2-b^2+\sin^2\gamma}}{a^2+\sin^2\gamma}\Big]\]

where \(\gamma\) is the azimuthal orientation of the panel and \(\beta\) is the tilt of the panel
(for this model, chosen as the optimal tilt according to the latitude). These
equations might give higher values than the real sunrise and sunset values. This
would imply that the Sun rises over the tilted plane before it has risen over the
horizon or that when the Sun sets, there is still light striking the plane. As this
is wrong, the sunrise and sunset values for a horizontal plane must be compared
with the values for a tilted plane and the lower values (for both sunrise and
sunset) must be selected.

\[\omega_0=\min(\omega_s,\omega_s')\]

Incidence Angle \(\theta\)

As stated before, PV panels are not normally parallel to
the Earth’s surface, so it is necessary to calculate the incidence angle of the
Sun’s rays striking the surface of the panel. Nevertheless, a set of angles must
be calculated in order to calculate the incidence angle.

The elevation angle \(\alpha\) or altitude angle measures the angular distance
between the Sun and the horizon. It ranges from 0° at the sunrise to 90° at the
noon (the value at the noon varies depending on the day of the year) [12].

\[\alpha=\arcsin[\sin\delta \sin\phi+\cos\delta\cos\phi\cos\omega]\]

The azimuth angle \(A_{z}\) is an angular measurement of the horizontal position
of the Sun. It could be seen as a compass direction with 0° to the North and
180° to the South. The range of values of the azimuth angle varies over the
year, going from 90° at the sunrise to 270° at the sunset during the equinoxes.
The equation for the azimuth depends on the time of the day. For the solar
morning, it is [12]:

\[Az_{am}=\arccos\Big(\frac{\sin\delta\cos\phi-\cos\delta\sin\phi\cos\omega}{\cos\alpha}\Big)\]

and for the afternoon:

\[Az_{pm}=360-Az_{am}\]

With the already calculated angles, it is possible to calculate the incidence angle,
which is the angle between the surface’s normal and the Sun’s beam radiation [10]:

\[\begin{split}\begin{split}
\theta_{i}=&\arccos(\sin\delta \sin\phi \cos\beta \\
&-\sin\delta\cos\phi\sin\beta\cos\gamma \\
&+\cos\delta\cos\phi\cos\beta\cos\omega \\
&+\cos\delta\sin\phi\sin\beta\cos\gamma\cos\omega\\
&+\cos\delta\sin\beta\sin\gamma\sin\omega)
\end{split}\end{split}\]

Tracking

When one-axis tracking is active, the tilt angle \(\beta\) and the azimuthal orientation \(\gamma\)
of the panel change constantly as the panel follows the sun. In this model a tilted on-axis tracking with east-west tracking is considered.
The rotation of the plane around the axis is deffned by the rotation angle
R, it is calculated in order to achieve the smallest incidence angle for the plane
by the following equations [13]:

\[X=\frac{-\cos\alpha \sin(A_z-\gamma_a)}{-\cos\alpha \cos(A_z-\gamma_a)\sin\beta_a+\sin\alpha \cos\beta_a}\]

\[\begin{split}\Psi=
\begin{cases}
 0, & \text{if}\ X=0, \text{ or if } X>0 \land (A_z-\gamma_a)>0, \text{ or if } X<0 \land (A_z-\gamma_a)<0 \\
 180, & \text{if}\ X<0 \land (A_z-\gamma_a)>0 \\
 -180, & \text{if}\ X>0 \land (A_z-\gamma_a)<0
\end{cases}\end{split}\]

for the previous equations, \(\beta_a\) and \(\gamma_a\) are considered as the tilt and azimuthal
orientation of the tracking axis respectively. The variable \(\Psi\) places R in the correct
trigonometric quadrant. For the selection of \(\Psi\), the difference \((A_z-\gamma_a)\) must be considered
as the angular displacement with the result within the range
of -180°to 180°. Once the rotation angle is calculated, the tilt and azimuthal
orientation of the panel are calculated as follows:

\[\beta=\arccos(\cos R \cos\beta_a)\]

\[\begin{split}\gamma=
\begin{cases}
 \gamma_a+\arcsin\Big(\dfrac{\sin R}{\sin\beta}\Big), & \text{for}\ \beta_a \neq 0, -90 \leq R \leq 90 \\
 \gamma_a-180-\arcsin\Big(\dfrac{\sin R}{\sin\beta}\Big), & \text{for}\ -180 \leq R < -90 \\
 \gamma_a+180-\arcsin\Big(\dfrac{\sin R}{\sin\beta}\Big), & \text{for}\ 90 < R \leq -90
\end{cases}\end{split}\]

Then the incidence angle is calculated using the new \(\beta\) and \(\gamma\) angles. For two-axis tracking the beta angle is considered as the complementary
angle to the altitude angle while the azimuthal orientation angle \(\gamma\) is considered as \(A_z - 180\).

Solar Power

To calculate the solar power we must start with the solar constant. However,
the irradiance striking the top of the Earth’s atmosphere (TOA) varies over the
year. This is due to the eccentricity of the Earth’s orbit and its tilted axis. The
TOA is calculated according to the following equation [10]:

\[TOA=G_{sc}\Big[1+0.03344 \cos\Big(\frac{2 \pi N}{365.25}-0.048869\Big)\Big] \sin\alpha\]

where \(G_{sc}\) is the solar constant (1367 W/m2) and N is the day of the year.
This equation escalates the solar constant by multiplying it with a factor related
to the eccentricity of the Earth’s orbit and the sinus of the altitude angle of the
Sun to finally get the extraterrestrial horizontal radiation.

To calculate the amount of horizontal radiation at the surface of the Earth,
the attenuation caused by the atmosphere must be considered. A way to measure
this attenuation is by using the clearness index \(k_t\). This value is the ratio
between the extraterrestrial horizontal radiation and the radiation striking the
Earth’s surface:

\[k_t=\frac{GHI_{M2}}{TOA_{M2}}\]

where \(GHI_{M2}\) and \(TOA_{M2}\) are the global horizontal irradiance and the top
of the atmosphere radiation extracted from MERRA-2 data. Furthermore, the
GHI is made-up by diffuse and beam radiation:

\[GHI=G_b+G_d\]

where \(G_b\) is the beam radiation, which is the solar radiation that travels directly
to the Earth’s surface without any scattering in the atmosphere, and \(G_d\) stands
forfor the diffuse radiation, the radiation that comes to a surface from all directions
as its trajectory is changed by the atmosphere. These two components have
different contributions to the total irradiance on a tilted surface, so it is necessary
to distinguish between them. This can be done using the correlation of Erbs
et al [4], which calculates the ratio R of the beam and diffuse radiation as a
function of the clearness index.

\[\begin{split}R=
\begin{cases}
 1 - 0.09 k_t, & \text{for}\ k_t\leq0.22 \\
 0.9511 - 0.1604 k_t+ 4.388 k_t^2 - 16.638 k_t^3 + 12.336 k_t^4, & \text{for}\ 0.22> k_t \leq 0.8 \\
 0.165, & \text{for}\ k_t>0.8
\end{cases}\end{split}\]

Furthermore, diffuse radiation could be divided into more components. The
HDKR model [3][10], developed by Hay, Davies, Klucher, and Reindl in 1979
assumes isotropic diffuse radiation, which means that the diffuse radiation is
uniformly distributed across the sky. However, it also considers a higher radiation
intensity around the Sun, the circumsolar diffuse radiation, and a horizontal
brightening correction. To use the HDKR model, some factors must be defined
first [10]. The ratio of incident beam to horizontal beam:

\[R_b=\frac{\cos\theta_i}{\sin\alpha}\]

The anisotropy index for forward scattering circumsolar diffuse irradiance:

\[A_i=(1-R)k_t\]

The modulating factor for horizontal brightening correction:

\[f=\sqrt{1-R}\]

Then the total radiation incident on the surface is calculated with the next equations:

\[GHI=k_tTOA\]

\[\begin{split}\begin{split}
G_T=GHI\Big[(1-R+RA_i)R_b+R(1-A_i)\Big(\frac{1+\cos\beta}{2}\Big)&\Big(1+f\sin^3\frac{\beta}{2}\Big)\\
&+\rho_g\Big(\frac{1-\cos\beta}{2}\Big)\Big]
 \end{split}\end{split}\]

Where \(\rho_g\) is the ground reflectance or albedo and it is related to
the land use type of the location under analysis. The first term of this equation
corresponds to the beam and circumsolar diffuse radiation, the second to the isotropic
and horizon brightening radiation, and the last one to the incident ground-reflected radiation.

PV

Temperature losses

In a PV panel, not all the radiation absorbed is converted
into current. Some of this radiation is dissipated into heat. Solar cells, like all
other semiconductors, are sensitive to temperature. An increase of temperature
results in a reduction of the band gap of the solar cell which is translated into
a reduction of the open circuit voltage. The overall effect is a reduction of the
power output of the PV system. To calculate the power loss of a solar cell it is
necessary to know its temperature. This can be expressed as a function of the
incident radiation and the ambient temperature [9]:

\[T_{cell}=T_{amb}+kG_T\]

where \(T_{amb}\) is the ambient temperature and k is the Ross coefficient, which
depends on the characteristics related to the module and its environment. It
is defined based on the land use type of the region where the panel is located.
With the temperature of the panel, the fraction of the irradiated power which
is lost can be calculated as:

\[Loss_T=(T_{cell}-T_r)T_k\]

where \(T_r\) is the rated temperature of the module according to standard test
conditions and \(T_k\) is the heat loss coefficient. Both values are usually given on
the data sheets of the PV modules.

PV Capacity Factor Calculation

It is the ratio of the actual power output to the theoretical
maximum output which is normally considered as \(1000 W/m^{2}\). The temperature
loss is also considered for this calculation:

\[CF_{PV} = \frac{G_T(1-Loss_T)}{1000}\]

Ground coverage ratio (GCR)

It is also important to consider the area lost due to the space between the modules
or due to the modules shading adjacent modules. This is done with the GCR which is
the ratio of the module area to the total ground area.

\[GCR=\frac{1}{\cos\beta+|\cos A_z| \cdot \Big(\dfrac{\sin\beta}{\tan \alpha}\Big)}\]

CSP

For its popularity and long development history, the parabolic trough technology was chosen to model Concentrated Solar power.

Convection Losses

The receiver of parabolic troughs are kept in a vacuum glass tube to prevent convection as much as possible.
Radiative heat losses are still present and ultimatly results in convective losses between the glass tube and the air.
These heat losses are increased when wind is blowing around the receiver. The typical heat losses for a receiver
can be estimated through the following empirical equation [3]:

\[Q_{Loss} = A_r(U_{L_{cst}} + U_{L_{Wind}} \cdot V_{Wind}^{0.6})(T_i-T_a)\]

where \(A_r\) is the outer area of the receiver, \(U_{L_{cst}}\) correspond to a loss coefficient at zero wind speed,
\(U_{L_{Wind}}\) is a loss coefficient dependent on the wind speed \(V_{Wind}\),
\(T_i\) is the average heat transfer fluid temperature, and \(T_a\) is the ambient temperature.

Typical values for the \(U_{L_{cst}}\) and \(U_{L_{Wind}}\) are 1.06 \(kW/m^{2}K\) and 1.19 \(kW/(m^{2}K(m/s)^{0.6})\) respectively

Flow Losses

Flow loss coefficient or heat removal factor \(F_r\) is the ratio between the actual heat transfer to the maximum heat transfer possible between
the receiver and the heat transfer fluid (HTF). These losses result from the difference between the temperature of the receiver and
the temperature of the HTF and are dependent on the heat capacity and the flow rate of the HTF.
A typical value for parabolic troughs is 95%.

CSP Capacity Factor Calculation

The capacity factor of a solar field is the ratio of the actual useful heat collected to the theoretical maximum heat output of 1000 W/m². It is given by the formula:

\[CF_{csp} = \frac{F_r(S - Q_{Loss})}{1000}\]

Where \(S\) is the component of the DNI captured by the collector at an angle (based on one axis traking),
\(Q_{Loss}\) is the heat convection losses, and \(F_r\) is the heat removal factor.

Wind

Wind Speed

In order to use a single value for the following wind power calculations, a norm is calculated
as if both variables were vectors, so the absolute velocity is:

\[W_{50M} = \sqrt{V50M^2+U50M^2}\]

However, the wind velocities extracted from MERRA-2 are given for a height
of 50 meters, which does not correspond to the hub height of the wind turbines;
therefore, they must be extrapolated.

Wind Shear

While the wind is hardly affected by the Earth’s surface at a
height of about one kilometer, at lower heights in the atmosphere the friction of
the Earth’s surface reduces the speed of the wind [2]. One of the most common
expressions describing this phenomenon is the Hellmann exponential law, which
correlates the wind speed at two different heights [6].

\[v=v_0\Big(\frac{H}{H_0}\Big)^\alpha\]

Where \(v\) is the wind speed at a height \(H\), \(v_0\) is the wind speed at a height \(H_0\)
and \(\alpha\) is the Hellmann coefficient, which is a function of the topography and air
stability at a specific location.

Wind Power

The wind turbines convert the kinetic energy of the air into torque. The
power that a turbine can extract from the wind is described by the following
expression [8]:

\[P=\frac{1}{2}\rho A v^3 C_p\]

where \(\rho\) is the density of the air, \(v\) is the speed of the wind and \(C_p\) is the power
cofficient. As it is shown in the previous equation, the energy in the wind varies
proportionally to the cube of the wind’s speed. Therefore, the power output of
wind turbines is normally described with cubic power curves. However, there
are some regions within those curves which have special considerations.

Cut-in wind speed

The wind turbines start running at a wind speed between
3 and 5 m/s to promote torque and acceleration. Therefore, there is no power
generation before this velocity.

Rated Wind Speed

The power output of a wind turbine rises with the wind
speed until the power output reaches a limit defined by the characteristics of
the electric generator. Beyond this wind speed, the design and the controllers of
the wind turbine limit the power output so this does not increase with further
increases of wind speed.

Cut-out wind speed

The wind turbines are programmed to stop at wind
velocities above their rated maximum wind speed(usually around 25 m/s)
to avoid damage to the turbine and its surroundings,
so there is no power generation after this velocity.

Wind Onshore and Offshore Capacity factor

Finally, the capacity factors, which are the ratios of the
actual power output to the theoretical maximum output (rated wind speed),
are calculated according to the previously presented regions:

\[\begin{split}CF=
\begin{cases}
 \dfrac{W_{hub}^3-W_{in}^3}{W_r^3-W_{in}^3}, & \text{for}\ W_{in}<W_{hub}<W_r \\
 1, & \text{for}\ W_r\leq W_{hub}\leq W_{out} \\
 0, & \text{for}\ W_{hub}<W_{in} | W_{hub}>W_{out}
\end{cases}\end{split}\]

where \(W_{in}\) is the cut-out wind speed, and \(W_r\)
is the rated wind speed. The area is not included in the previous equations as
it does not change in both generation states (actual and theoretical maximum
power). While the density could vary for both states, the overall impact of a
change in density is negligible compared to the wind speed and therefore is
not included in the calculation.

Implementation

You can run the code by typing:

$ python runme.py

The script runme.py calls the main functions of the code, which are explained in the following sections.

	initialization.py

	input_maps.py

	potential.py

	time_series.py

	regression.py

Helping functions for the models are included in correction_functions.py, spatial_functions.py, and physical_models.py.

	correction_functions.py

	spatial_functions.py

	physical_models.py

Utility functions as well as imported libraries are included in util.py.

	util.py

initialization.py

input_maps.py

	
lib.input_maps.downloadGWA(paths, param)

	This function downloads wind speed data from Global Wind Atlas (www.globalwindatlas.info) if it does not already exist

	Parameters

	
	paths (dict) – Dictionary including the paths.

	param (dict) – Dictionary including the user preferences.

	Returns

	The wind data is saved directly in the desired paths.

	Return type

	None

	
lib.input_maps.generate_area(paths, param)

	This function retreives the coordinates of the spatial scope and computes the pixel area gradient of the corresponding
raster.

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing the path to the output file.

	param (dict) – Dictionary of dictionaries containing spatial scope coordinates and desired resolution.

	Returns

	The mat file for AREA is saved in its respective path, along with its metadata in a JSON file.

	Return type

	None

	
lib.input_maps.generate_area_offshore(paths, param)

	This function retreives the coordinates of the spatial scope and computes the pixel area gradient of the corresponding
raster.

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing the path to the output file.

	param (dict) – Dictionary of dictionaries containing spatial scope coordinates and desired resolution.

	Returns

	The mat file for AREA is saved in its respective path, along with its metadata in a JSON file.

	Return type

	None

	
lib.input_maps.generate_array_coordinates(paths, param, W50M)

	ToDo: All of this docstring
This function reads the daily NetCDF data (from MERRA-2) for SWGDN, SWTDN, T2M, U50m, and V50m,
and saves them in matrices with yearly time series with low spatial resolution. Depending on the MERRA_correction
parameter this function will also call clean_weather_data() to remove data outliers.
This function has to be run only once.

	Parameters

	
	paths (dict) – Dictionary including the paths to the MERRA-2 input files MERRA_IN, and to the desired output locations for T2M, W50M and CLEARNESS.

	param (dict) – Dictionary including the year, the spatial scope, and the MERRA_correction parameter.

	Returns

	The files T2M.mat, W50M.mat, and CLEARNESS.mat are saved directly in the defined paths, along with their metadata in JSON files.

	Return type

	None

	
lib.input_maps.generate_bathymetry(paths, param)

	This function reads the global map of bathymetry, resizes it, and creates a raster out of it for the desired scope.
The values are in meter (negative in the sea).

	Parameters

	
	paths (dict) – Dictionary including the paths to the global bathymetry raster Bathym_global and to the output path BATH.

	param (dict) – Dictionary including the desired resolution, the coordinates of the bounding box of the spatial scope, and the georeference dictionary.

	Returns

	The tif file for BATH is saved in its respective path, along with its metadata in a JSON file.

	Return type

	None

	
lib.input_maps.generate_land(paths, param)

	This function reads the shapefile of the subregions within the scope, and creates a raster out of it.

	Parameters

	
	paths (dict) – Dictionary including the paths SUB, LAND, EEZ.

	param (dict) – Dictionary including the geodataframe of the shapefile, the number of features, the coordinates of the bounding box of the spatial scope, and the number of rows and columns.

	Returns

	The tif file for SUB is saved in its respective path, along with its metadata in a JSON file.

	Return type

	None

	
lib.input_maps.generate_landuse(paths, param)

	This function reads the global map of land use, and creates a raster out of it for the desired scope.
There are 17 discrete possible values from 0 to 16, corresponding to different land use classes.
See config.py for more information on the land use map.

	Parameters

	
	paths (dict) – Dictionary including the paths to the global land use raster LU_global and to the output path LU.

	param (dict) – Dictionary including the desired resolution, the coordinates of the bounding box of the spatial scope, and the georeference dictionary.

	Returns

	The tif file for LU is saved in its respective path, along with its metadata in a JSON file.

	Return type

	None

	
lib.input_maps.generate_livestock(paths, param)

	This function reads the global maps of each livestock density, resizes it, and creates a raster out of it for the desired scope.
The values are in number of animals per sq.km.

	Parameters

	
	paths (dict) – Dictionary including the paths to the global livestock rasters LS_global and to the output path LS.

	param (dict) – Dictionary including the desired resolution, the coordinates of the bounding box of the spatial scope, and the georeference dictionary.

	Returns

	The tif files for LS is saved in its respective path, along with its metadata in a JSON file.

	Return type

	None

	
lib.input_maps.generate_maps_for_scope(paths, param, multiprocessing)

	This function calls the individual functions that generate the maps for the geographic scope.

	Parameters

	
	paths (dict) – Dictionary including the paths.

	param (bool) – Dictionary including the user preferences.

	multiprocessing – Determines if multiprocessing is applied.

	Returns

	The maps are saved directly in the desired paths.

	Return type

	None

	
lib.input_maps.generate_osm_areas(paths, param)

	This function reads the osm land use shapefile, identifies several areas, and excludes pixels around them based on a
user-defined buffers buffer_pixel_amount. It creates a masking raster of boolean values (0 or 1) for the scope.
Zero means the pixel is excluded, one means it is suitable.
The function is useful in case there is a policy to exclude renewable energy projects next to certain type of areas.

	Parameters

	
	paths (dict) – Dictionary including the path to the osm land-use shapefile, and to the output path BUFFER.

	param (dict) – Dictionary including the user-defined buffers (buffer_pixel_amount) and the georeference dictionary.

	Returns

	The tif file for BUFFER is saved in its respective path, along with its metadata in a JSON file.

	Return type

	None

	
lib.input_maps.generate_protected_areas(paths, param)

	This function reads the shapefile of the globally protected areas, adds an attribute whose values are based on the dictionary
of conversion (protected_areas) to identify the protection category, then converts the shapefile into a raster for the scope.
The values are integers from 0 to 10.

	Parameters

	
	paths (dict) – Dictionary including the paths to the shapefile of the globally protected areas, to the land raster of the scope, and to the output path PA.

	param (dict) – Dictionary including the dictionary of conversion of protection categories (protected_areas).

	Returns

	The tif file for PA is saved in its respective path, along with its metadata in a JSON file.

	Return type

	None

	
lib.input_maps.generate_protected_areas_offshore(paths, param)

	This function reads the shapefile of the globally protected areas, adds an attribute whose values are based on the dictionary
of conversion (protected_areas) to identify the protection category, then converts the shapefile into a raster for the scope.
The values are integers from 0 to 10.

	Parameters

	
	paths (dict) – Dictionary including the paths to the shapefile of the globally protected areas, to the land raster of the scope, and to the output path PA.

	param (dict) – Dictionary including the dictionary of conversion of protection categories (protected_areas).

	Returns

	The tif file for PA is saved in its respective path, along with its metadata in a JSON file.

	Return type

	None

	
lib.input_maps.generate_sea(paths, param)

	This function reads the shapefiles of the countries (land areas) and of the exclusive economic zones (sea areas)
within the scope, and creates two rasters out of them.

	Parameters

	
	paths (dict) – Dictionary including the paths LAND and EEZ.

	param (dict) – Dictionary including the geodataframes of the shapefiles, the number of features, the coordinates of the bounding box of the spatial scope, and the number of rows and columns.

	Returns

	The tif files for LAND and EEZ are saved in their respective paths, along with their metadata in JSON files.

	Return type

	None

	
lib.input_maps.generate_settlements(paths, param)

	
	This function reads the global map of settlements, and creates a raster out of it for the desired scope.
	See config.py for more information on the settlements map.

	Parameters

	
	paths (dict) – Dictionary including the paths to the global settlements raster WSF_global and to the output path WSF.

	param (dict) – Dictionary including the desired resolution, the coordinates of the bounding box of the spatial scope, and the georeference dictionary.

	Returns

	The tif file for WSF is saved in its respective path, along with its metadata in a JSON file.

	Return type

	None

	
lib.input_maps.generate_slope(paths, param, A_TOPO)

	This function reads the topography raster for the scope, and creates a raster of slope out of it. The slope is calculated in
percentage, although this can be changed easily at the end of the code.

	Parameters

	
	paths (dict) – Dictionary including the paths to the topography map of the scope TOPO and to the output path SLOPE.

	param (dict) – Dictionary including the desired resolution, the coordinates of the bounding box of the spatial scope, and the georeference dictionary.

	Returns

	The tif file for SLOPE is saved in its respective path, along with its metadata in a JSON file.

	Return type

	None

	
lib.input_maps.generate_topography(paths, param)

	This function reads the tiles that make the global map of topography, picks those that lie completely or partially in the scope,
and creates a raster out of them for the desired scope. The values are in meter.

	Parameters

	
	paths (dict) – Dictionary including the paths to the tiles of the global topography raster Topo_tiles and to the output path TOPO.

	param (dict) – Dictionary including the desired resolution, the coordinates of the bounding box of the spatial scope, and the georeference dictionary.

	Returns

	The tif file for TOPO is saved in its respective path, along with its metadata in a JSON file.

	Return type

	None

	
lib.input_maps.generate_weather_files(paths, param)

	This function reads the daily NetCDF data (from MERRA-2) for SWGDN, SWTDN, T2M, U50m, and V50m,
and saves them in matrices with yearly time series with low spatial resolution. Depending on the MERRA_correction
parameter this function will also call clean_weather_data() to remove data outliers.
This function has to be run only once.

	Parameters

	
	paths (dict) – Dictionary including the paths to the MERRA-2 input files MERRA_IN, and to the desired output locations for T2M, W50M and CLEARNESS.

	param (dict) – Dictionary including the year, the spatial scope, and the MERRA_correction parameter.

	Returns

	The files T2M.mat, W50M.mat, and CLEARNESS.mat are saved directly in the defined paths, along with their metadata in JSON files.

	Return type

	None

	
lib.input_maps.generate_weather_offshore_files(paths, param)

	This function reads the daily NetCDF data (from MERRA-2) for U50m, and V50m,
and saves them in matrices with yearly time series with low spatial resolution. Depending on the MERRA_correction
parameter this function will also call clean_weather_data() to remove data outliers.
This function has to be run only once.

	Parameters

	
	paths (dict) – Dictionary including the paths to the MERRA-2 input files MERRA_IN, and to the desired output locations for T2M, W50M and CLEARNESS.

	param (dict) – Dictionary including the year, the spatial scope, and the MERRA_correction parameter.

	Returns

	The file W50M.mat is saved directly in the defined paths, along with their metadata in JSON files.

	Return type

	None

potential.py

	
lib.potential.calc_FLH_solar(hours, args)

	This function computes the full-load hours for all valid pixels specified in ind_nz in param.
Due to parallel processing, most of the inputs are collected in the list args.

	Parameters

	
	hours (numpy array) – Filtered day hour ranks in a year (from 0 to 8759).

	args (list) – List of arguments:
* param (dict): Dictionary including multiple parameters such as the status bar limit, the name of the region,
and others for calculating the hourly capacity factors.
* tech (str): Name of the technology.
* rasterData (dict): Dictionary of numpy arrays containing land use types, Ross coefficients, albedo coefficients,
and wind speed correction for every point in reg_ind.
* merraData (dict): Dictionary of numpy arrays containing the weather data for every point in reg_ind.

	Return FLH

	Full-load hours over the year for the technology.

	Return type

	numpy array

	
lib.potential.calc_FLH_windoff(hours, args)

	This function computes the full-load hours for all valid pixels specified in ind_nz in param. Due to parallel processing,
most of the inputs are collected in the list args.

	Parameters

	
	hours (numpy array) – Hour ranks in a year (from 0 to 8759).

	args (list) – List of arguments:
* param (dict): Dictionary including multiple parameters such as the status bar limit, the name of the region, and
others for calculating the hourly capacity factors.
* tech (str): Name of the technology.
* rasterData (dict): Dictionary of numpy arrays containing land use types, Ross coefficients, albedo coefficients,
and wind speed correction for every point in reg_ind.
* merraData (dict): Dictionary of numpy arrays containing the weather data for every point in reg_ind.

	Return FLH

	Full-load hours over the year for the technology.

	Return type

	numpy array

	
lib.potential.calc_FLH_windon(param, tech, rasterData, merraData, GWA_array, b_xmin, b_xmax, b_ymin, b_ymax, x_gwa, y_gwa, pixles, list_results)

	This function computes the full-load hours for all valid pixels specified in ind_nz in param. Due to parallel processing,
most of the inputs are collected in the list args.

	Parameters

	
	hours (numpy array) – Hour ranks in a year (from 0 to 8759).

	args (list) – List of arguments:
* param (dict): Dictionary including multiple parameters such as the status bar limit, the name of the region, and
others for calculating the hourly capacity factors.
* tech (str): Name of the technology.
* rasterData (dict): Dictionary of numpy arrays containing land use types, Ross coefficients, albedo coefficients,
and wind speed correction for every point in reg_ind.
* merraData (dict): Dictionary of numpy arrays containing the weather data for every point in reg_ind.

	Return FLH

	Full-load hours over the year for the technology.

	Return type

	numpy array

	
lib.potential.calc_gcr(Crd_all, m_high, n_high, res_desired, GCR)

	This function creates a GCR weighting matrix for the desired geographic extent.
The sizing of the PV system is conducted on a user-defined day for a shade-free exposure
to the sun during a given number of hours.

	Parameters

	
	Crd_all (list) – Desired geographic extent of the whole region (north, east, south, west).

	m_high (int) – Number of rows.

	n_high (int) – Number of columns.

	res_desired (list) – Resolution of the high resolution map.

	GCR (dict) – Dictionary that includes the user-defined day and the duration of the shade-free period.

	Return A_GCR

	GCR weighting raster.

	Return type

	numpy array

	
lib.potential.calculate_full_load_hours(paths, param, tech, multiprocessing)

	This function calculates the yearly FLH for a technology for all valid pixels in a spatial scope. Valid pixels are land pixels
for WindOn, PV and CSP, and sea pixels for WindOff. The FLH values are calculated by summing up hourly capacity factors.

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing the paths to the input weather data, land, sea and land use rasters, and correction rasters.

	param (dict) – Dictionary of dictionaries containing the spatial scope, and technology and computation parameters.

	tech (str) – Technology under study.

	multiprocessing (bool) – Determines if the computation uses multiprocessing (True/False)

	Returns

	The raster of FLH potential is saved as mat and tif files, along with the json metadata file.

	Return type

	None

	
lib.potential.get_merra_raster_data(paths, param, tech)

	This function returns a tuple of two dictionaries containing weather and correction rasters for specified technology.

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing the paths to the input weather and raster data.

	param (dict) – Dictionary of dictionaries containing land use, Ross coefficients, albedo, and Hellmann coefficients.

	tech (str) – Technology under study.

	Return (merraData, rasterData)

	Dictionaries for the weather data and for the correction data.

	Return type

	tuple (dict, dict)

	
lib.potential.mask_potential_maps(paths, param, tech)

	This function first reads the rasters for land use, slope, bathymetry, and protected areas for the scope. Based on user-defined assumptions on
their suitabilities, it generates a masking raster to exclude the unsuitable pixels. Both the mask itself
and the masked potential rasters can be saved.

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing user-defined parameters for masking, protected areas, and landuse.

	param (dict) – Dictionary of dictionaries containing the paths to the land use, protected areas, slope and bathymetry, in addition to output paths.

	tech (str) – Technology under study.

	Returns

	The files for the mask and the masked FLH are saved as tif and mat files, along with their metadata json files.

	Return type

	None

	
lib.potential.redistribution_array(param, merraData, i, j, xmin, xmax, ymin, ymax, GWA_array, x_gwa, y_gwa)

	What does this function do?

	Parameters

	
	param –

	merraData –

	i –

	j –

	xmin –

	xmax –

	ymin –

	ymax –

	GWA_array –

	x_gwa –

	y_gwa –

	Return reMerra

	

	Return type

	numpy array

	Aim:
	Increase the resolution of the MERRA wind data by using Global Wind Atlas data.
For this reason, the low resolution MERRA data is redistributed by the energy distribution of the higher resolution Global Wind Atlas data

	Algorithm:
	
	Import wind data from Global Wind Atlas

	Select pixels that are within one MERRA pixle

	Convert from wind speed to energy

	Redistribute MERRA data

ToDo: Where do the borders/limits come from? -> not shape file ?!?

	
lib.potential.report_potentials(paths, param, tech)

	This function reads the FLH files and the subregion shapefile, and creates a CSV file containing various statistics:

	Available number of pixels, before and after masking

	Available area in in km²

	FLH mean, median, max, min values, before and after masking

	FLH standard deviation after masking

	Power Potential in GW, before and after weighting

	Energy Potential in TWh in total, after weighting, and after masking and weighting

	Sorted sample of FLH values for each region

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing the paths to FLH, Masking, Weighting, and Area rasters.

	param (dict) – Dictionary of dictionaries containing technology parameters and sampling parameters.

	tech (str) – Technology under study.

	Returns

	The CSV files with the report and the sorted FLH are saved directly in the desired paths, along with the corresponding metadata in JSON files.

	Return type

	None

	
lib.potential.sampled_sorting(Raster, sampling)

	This function returns a list with a defined length of sorted values sampled from a numpy array.

	Parameters

	
	Raster (numpy array) – Input raster to be sorted.

	sampling (int) – Number of values to be sampled from the raster, defines length of output list.

	Return s

	List of sorted values sampled from Raster.

	Return type

	list

	
lib.potential.weight_potential_maps(paths, param, tech)

	This function weights the power potential by including assumptions on the power density and the available area.
Therefore, it reads the rasters for land use and protected areas for the scope. Based on user-defined assumptions on
their availabilities, it generates a weighting raster to exclude the unsuitable pixels. Both the weight itself
and the weighted potential rasters can be saved.

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing user-defined parameters for weighting, protected areas, and landuse.

	param (dict) – Dictionary of dictionaries containing the paths to the land use, protected areas, area, in addition to output paths.

	tech (str) – Technology under study.

	Returns

	The files for the weight and the weighted FLH are saved as tif and mat files, along with their metadata json files.

	Return type

	None

time_series.py

	
lib.time_series.calc_TS_solar(hours, args)

	This function computes the hourly PV and CSP capacity factor for the desired quantiles.

	Parameters

	
	hours (numpy array) – Hour ranks of the year (from 0 to 8759).

	args (list) – List of arguments:

	param (dict): Dictionary including multiple parameters such as the status bar limit, the name of the region, and
others for calculating the hourly capacity factors.

	tech (str): Name of the technology.

	rasterData (dict): Dictionary of numpy arrays containing land use types, Ross coefficients, albedo coefficients,
and wind speed correction for every point in reg_ind.

	merraData (dict): Dictionary of numpy arrays containing the weather data for every point in reg_ind.

	Return TS

	Array of time series for the desired quantiles for each subregion.

	Return type

	numpy array

	
lib.time_series.calc_TS_windoff(hours, args)

	This function computes the hourly onshore and offshore wind capacity factor for desired quantiles.

	Parameters

	
	hours (numpy array) – Hour ranks of the year (from 0 to 8759).

	args (list) – List of arguments:

	param (dict): Dictionary including multiple parameters such as the status bar limit, the name of the region, and
others for calculating the hourly capacity factors.

	tech (str): Name of the technology.

	rasterData (dict): Dictionary of numpy arrays containing the wind speed correction for every point in reg_ind.

	merraData (dict): Dictionary of numpy arrays containing the weather data for every point in reg_ind.

	Return TS

	Array of time series for the desired quantiles for each subregion.

	Return type

	numpy array

	
lib.time_series.calc_TS_windon(point, args)

	This function computes the hourly onshore and offshore wind capacity factor for desired quantiles.

	Parameters

	
	hours (numpy array) – Hour ranks of the year (from 0 to 8759).

	args (list) – List of arguments:

	param (dict): Dictionary including multiple parameters such as the status bar limit, the name of the region, and
others for calculating the hourly capacity factors.

	tech (str): Name of the technology.

	rasterData (dict): Dictionary of numpy arrays containing the wind speed correction for every point in reg_ind.

	merraData (dict): Dictionary of numpy arrays containing the weather data for every point in reg_ind.

	Return TS

	Array of time series for the desired quantiles for each subregion.

	Return type

	numpy array

	
lib.time_series.combinations_for_time_series(paths, param, tech)

	This function reads the list of generated regression coefficients for different hub heights and orientations,
compares it to the user-defined modes and combos and returns a list of lists containing all the available
combinations. The function will return a warning if the user input and the available time series are not congruent.

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing the paths to the regression output folder.

	param (dict) – Dictionary of dictionaries containing the year, the user defined combos, and subregions name.

	tech (str) – Technology under study.

	Return combinations

	List of combinations of settings to be used in stratified time series.

	Return inputfiles

	List of regression outputs to be used in generating the stratified time series.

	Return type

	tuple (list, list)

	Raises

	
	No coefficients – If regression coefficients are not available, a warning is raised.

	Missing coefficients – If regression coefficients are missing based on user-defined combos and mode, a warning is raised.

	
lib.time_series.find_representative_locations(paths, param, tech)

	This function reads the masked FLH raster and finds the coordinates and indices of the pixels for the user-defined quantiles for each region.
It creates a shapefile containing the position of those points for each region, and two MAT files with their
coordinates and indices.

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing path values for FLH MAT files, region statistics, and output paths.

	param (dict) – Dictionary of dictionaries containing the user-defined quantiles, FLH resolution, and spatial scope.

	tech (str) – Technology under study.

	Returns

	The shapefile with the locations and the two MAT files for the coordinates and the indices are saved
directly in the given paths, along with their corresponding metadata in JSON files.

	Return type

	None

	
lib.time_series.generate_time_series_for_regions(paths, param, tech)

	This function reads the coefficients obtained from the regression function as well as the generated time series for
the combinations of hub heights / orientations and quantiles, to combine them according to user-defined
modes (quantile combination) and combos (hub heights / orientation combinations) and saves the results (time series)
in a CSV file.

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing the paths to the regression coefficients and the time series.

	param (dict) – Dictionary of dictionaries containing the list of subregions, the modes, and the combos.

	tech (str) – Technology under study.

	Returns

	The stratified time series for each region, mode, and combo are saved directly in the given path, along with the metadata in a JSON file.

	Return type

	None

	
lib.time_series.generate_time_series_for_representative_locations(paths, param, tech)

	This function generates yearly capacity factor time-series for the technology of choice at quantile locations
generated in find_locations_quantiles.
The timeseries are saved in CSV files.

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing paths to coordinate and indices of the quantile locations.

	param (dict) – Dictionary of dictionaries containing processing parameters.

	tech (str) – Technology under study.

	Returns

	The CSV file with the time series for all subregions and quantiles is saved directly in the given path,
along with the corresponding metadata in a JSON file.

	Return type

	None

	
lib.time_series.generate_time_series_for_specific_locations(paths, param, tech)

	This function generates yearly capacity factor time-series for the technology of choice at user defined locations.
The timeseries are saved in CSV files.

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing paths output desired locations.

	param (dict) – Dictionary of dictionaries containing processing parameters, and user-defined locations.

	tech (str) – Technology under study.

	Returns

	The CSV file with the time series for all subregions and quantiles is saved directly in the given path,
along with the corresponding metadata in a JSON file.

	Return type

	None

	Raises

	
	Point locations not found – Is raised when the dictionary containing the points names and locations is empty.

	Points outside spatial scope – Some points are not located inside of the spatial scope, therefore no input maps are available for the calculations

regression.py

	
lib.regression.check_regression_model(paths, tech)

	This function checks the regression model parameters for nan values, and returns the FLH and TS model dataframes.
If missing values are present in the input CSV files, the users are prompted if they wish to continue or can modify
the corresponding files.

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing the paths to the FLH and TS model regression CSV files.

	tech (str) – Technology under study.

	Return (FLH, TS_reg)

	Tuple of pandas dataframes for FLH and TS.

	Return type

	Tuple of pandas dataframes

	
lib.regression.clean_FLH_regression(paths, param)

	This function creates a CSV file containing the model FLH used for regression. If the region is present in the
IRENA database, then the FLH are extracted directly from there. In case it is not present, a place holder for the
regions is written in the csv file and it is the user’s responsibility to fill in an appropriate value.
The function will warn the user, and print all regions that are left blank.

	Parameters

	
	param (dict) – Dictionary of dictionaries containing the list of regions.

	paths (dict) – Dictionary of dictionaries containing the paths to IRENA_summary, IRENA_dict.

	Return missing

	List of string of the missing regions. The CSV file for the the FLH needed for the regression is saved directly in
the given path, along with the corresponding metadata in a JSON file.

	Return type

	list of str

	Raises

	Missing Regions – No FLH values exist for certain regions.

	
lib.regression.clean_TS_regression(paths, param, tech)

	This function creates a CSV file containing the model time series used for regression. If the region is present in
the EMHIRES text files then the TS is extracted directly from it. If the region is not present in the EMHIRES text
files, the highest FLH generated TS is used instead and is scaled to match IRENA FLH if the IRENA FLH are available.

	Parameters

	
	paths (dict) – Dictionary containing paths to EMHIRES text files.

	param (dict) – Dictionary containing the FLH_regression dataframe, list of subregions contained in shapefile, and year.

	Returns

	The time series used for the regression are saved directly in the given path, along with the corresponding metadata in a JSON file.

	Return type

	None

	Raises

	
	Missing FLH – FLH values are missing for at least one region. No scaling is applied to the time series for those regions.

	Missing EMHIRES – EMHIRES database is missing, generated timeseries will be used as model for all regions.

	
lib.regression.combinations_for_regression(paths, param, tech)

	This function reads the list of generated time series for different hub heights and orientations, compares it to the
user-defined combinations and returns a list of lists containing all the available combinations. The function will
return a warning if the user input and the available time series are not congruent.

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing the paths to the regional analysis output folder.

	param (dict) – Dictionary of dictionaries containing the subregions name, year, and user-defined combinations.

	tech (str) – Technology under study.

	Return combinations

	List of combinations for regression.

	Return type

	list

	Raises

	
	missing data – If no time series are available for this technology, a warning is raised.

	missing combination – If a hub height or orientation is missing based on user-defined combinations, a warning is raised.

	
lib.regression.get_regression_coefficients(paths, param, tech)

	This function solves the following optimization problem: A combination of quantiles, hub heights or orientations is to be found, so that
the error to a given historical time series (e.g. from EMHIRES for European countries) is minimized, while
constraining the FLH to match a given value (for example from IRENA). The settings of the combinations can be
defined by the user.

The function starts by identifying the existing settings (hub heights, orientations) and quantiles.
If the combinations of time series requested by the user cannot be found, a warning is raised.

It later runs the optimization and identifies the subregions for which a solution was found. If the optimization
is infeasible (too high or too low FLH values compared to the reference to be matched), the time series with the closest
FLH to the reference value is used in the final output.

The output consists of coefficients between 0 and 1 that could be multiplied later with the individual time series
in time_series.generate_stratified_timeseries. The sum of the coefficients for each combination is equal to 1.

	Parameters

	
	paths (dict) – Dictionary including the paths to the time series for each subregion, technology setting, and quantile, to the output paths for the coefficients.

	param (dict) – Dictionary including the dictionary of regression parameters, quantiles, and year.

	tech (str) – Technology under study.

	Returns

	The regression parameters (e.g. IRENA FLH and EMHIRES TS) are copied under regression_in folder, and
the regression coefficients are saved in a CSV file under regression_out folder, along with the metadata
in a JSON file.

	Return type

	None

	Raises

	
	Missing Data – No time series present for technology tech.

	Missing Data for Setting – Missing time series for desired settings (hub heights / orientations).

	
lib.regression.pyomo_regression_model()

	This function returns an abstract pyomo model of a constrained least square problem for time series fitting to
match model FLHs and minimize difference error with model time series.

	Return model

	Abstract pyomo model.

	Return type

	pyomo object

	
lib.regression.read_generated_TS(paths, param, tech, settings, subregion)

	This function returns a dictionary containing the available time series generated by the script based on
the desired technology and settings.

	Parameters

	
	paths (dict) – Dictionary including output folder for regional analysis.

	param (dict) – Dictionary including list of subregions and year.

	tech (str) – Technology under study.

	settings – List of lists containing setting combinations.

	subregion (str) – Name of the subregion.

	Return GenTS

	Dictionary of time series indexed by setting and quantile.

	Return type

	dict

	
lib.regression.regmodel_load_data(paths, param, tech, settings, subregion)

	This function returns a dictionary used to initialize a pyomo abstract model for the regression analysis
of each region.

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing the paths to the CSV time series files.

	param (dict) – Dictionary of dictionaries contating IRENA’s region list, FLHs and EMHIRES model timeseries.

	tech (str) – Technology under study.

	settings (list) – List of all the settings (hub heights/orientations) to be used in the regression.

	subregion (str) – Name of subregion.

	Return data

	Dictionary containing regression parameters.

	Return type

	dict

correction_functions.py

	
lib.correction_functions.clean_IRENA_summary(paths, param)

	This function reads the IRENA database, format the output for selected regions and computes the FLH based on the
installed capacity and yearly energy production. The results are saved in CSV file.

	Parameters

	
	param (dict) – Dictionary of dictionaries containing list of subregions, and year.

	paths (dict) – Dictionary of dictionaries containing the paths to the IRENA country name dictionary, and IRENA database.

	Returns

	The CSV file containing the summary of IRENA data for the countries within the scope is saved directly in the desired path, along with the corresponding metadata in a JSON file.

	Return type

	None

	
lib.correction_functions.clean_weather_data(p, paths, param)

	This function detects data outliers in the weather input .mat files. An outlier is a data point, for which
the absolute value of the difference between the yearly average value and the mean of the direct neighbors
(Moore neighborhood) is higher than a user-defined threshold MERRA_correction_factor. It replaces the hourly values
with the hourly values of the mean of the neighbors, and overwrites the original .mat file.

	Parameters

	
	paths (dict) – Dictionary including the path to the weather .mat files.

	param (dict) – Dictionary including the threshold value MERRA_correction_factor.

	Returns

	The file weather .mat files are overwritten after the correction.

	Return type

	None

	
lib.correction_functions.generate_wind_correction(paths, param)

	This function creates a matrix of correction factors for onshore and/or offshore wind.
There are different types of correction:

	Gradient correction: Adjusts for the hub height of the wind turbines, based on the Hellmann coefficients of each land use type.
This correction applies always.

	Resolution correction: Performs a redistribution of wind speed when increasing the resolution based on land use types, while ensuring that
the average of each MERRA-2 cell at 50m is still the same. This correction is optional, and is activated if res_correction is 1.
If not activated, the same value from the low resolution is repeated.

	Topographic/Orographic correction: Takes into account the elevation of the terrain, because MERRA-2 usually underestimates
the wind speed in mountains. This correction is optional, uses data from the Global Wind Atlas for all countries in the scope,
and is activated only for onshore wind if topo_correction is 1

	Parameters

	
	paths (dict) – Dictionary of dictionaries containing the paths to the land, land use, and topography rasters, and to the output files CORR_ON and CORR_OFF.

	param (dict) – Dictionary of dictionaries containing user-preferences regarding the wind correction, landuse, hub height, weather and desired resolutions.

	Returns

	The rasters for wind correction CORR_ON and/or CORR_OFF are saved directly in the user-defined paths, along with their metadata in JSON files.

	Return type

	None

spatial_functions.py

	
lib.spatial_functions.adjust_resolution(array, res_data, res_desired, aggfun=None)

	description

	
lib.spatial_functions.aggregate_x_dim(array, res_data, res_desired, aggfun)

	description

	
lib.spatial_functions.aggregate_y_dim(array, res_data, res_desired, aggfun)

	description

	
lib.spatial_functions.array2raster(newRasterfn, rasterOrigin, pixelWidth, pixelHeight, array)

	This function saves array to geotiff raster format based on EPSG 4326.

	Parameters

	
	newRasterfn (string) – Output path of the raster.

	rasterOrigin (list of two floats) – Latitude and longitude of the Northwestern corner of the raster.

	pixelWidth (integer) – Pixel width (might be negative).

	pixelHeight (integer) – Pixel height (might be negative).

	array (numpy array) – Array to be converted into a raster.

	Returns

	The raster file will be saved in the desired path newRasterfn.

	Return type

	None

	
lib.spatial_functions.calc_geotiff(Crd_all, res_desired)

	This function returns a dictionary containing the georeferencing parameters for geotiff creation,
based on the desired extent and resolution.

	Parameters

	
	Crd_all (numpy array) – Coordinates of the bounding box of the spatial scope.

	res_desired (list) – Desired data resolution in the vertical and horizontal dimensions.

	Return GeoRef

	Georeference dictionary containing RasterOrigin, RasterOrigin_alt, pixelWidth, and pixelHeight.

	Return type

	dict

	
lib.spatial_functions.calc_region(region, Crd_reg, res_desired, GeoRef)

	This function reads the region geometry, and returns a masking raster equal to 1 for pixels within and 0 outside of
the region.

	Parameters

	
	region (Geopandas series) – Region geometry

	Crd_reg (list) – Coordinates of the region

	res_desired (list) – Desired high resolution of the output raster

	GeoRef (dict) – Georeference dictionary containing RasterOrigin, RasterOrigin_alt, pixelWidth, and pixelHeight.

	Return A_region

	Masking raster of the region.

	Return type

	numpy array

	
lib.spatial_functions.crd2ind(Crd_points, Crd_all, resolution)

	This function converts latitude and longitude of points in high resolution rasters into indices.

	Parameters

	
	Crd_points (tuple of arrays) – Coordinates of the points in the vertical and horizontal dimensions.

	Crd_all (numpy array) – Array of coordinates of the bounding box of the spatial scope.

	resolution (list) – Data resolution in the vertical and horizontal dimensions.

	Return Ind_points

	Tuple of arrays of indices in the vertical and horizontal axes.

	Return type

	list of arrays

	
lib.spatial_functions.crd_merra(Crd_regions, res_weather)

	This function calculates coordinates of the bounding box covering MERRA-2 data.

	Parameters

	
	Crd_regions (numpy array) – Coordinates of the bounding boxes of the regions.

	res_weather (list) – Weather data resolution.

	Return Crd

	Coordinates of the bounding box covering MERRA-2 data for each region.

	Return type

	numpy array

	
lib.spatial_functions.define_spatial_scope(scope_shp)

	This function reads the spatial scope shapefile and returns its bounding box.

	Parameters

	scope_shp (Geopandas dataframe) – Spatial scope shapefile.

	Return box

	List of the bounding box coordinates.

	Return type

	list

	
lib.spatial_functions.ind2crd(Ind_points, Crd_all, resolution)

	This function converts indices of points in high resolution rasters into longitude and latitude coordinates.

	Parameters

	
	Ind_points (tuple of arrays) – Tuple of arrays of indices in the vertical and horizontal axes.

	Crd_all (numpy array) – Array of coordinates of the bounding box of the spatial scope.

	resolution (list) – Data resolution in the vertical and horizontal dimensions.

	Return Crd_points

	Coordinates of the points in the vertical and horizontal dimensions.

	Return type

	list of arrays

	
lib.spatial_functions.ind_global(Crd, res_desired)

	This function converts longitude and latitude coordinates into indices on a global data scope, where the origin is at (-90, -180).

	Parameters

	
	Crd (numpy array) – Coordinates to be converted into indices.

	res_desired (list) – Desired resolution in the vertical and horizontal dimensions.

	Return Ind

	Indices on a global data scope.

	Return type

	numpy array

	
lib.spatial_functions.ind_merra(Crd, Crd_all, res)

	This function converts longitude and latitude coordinates into indices within the spatial scope of MERRA-2 data.

	Parameters

	
	Crd (numpy array) – Coordinates to be converted into indices.

	Crd_all (numpy array) – Coordinates of the bounding box of the spatial scope.

	res (list) – Resolution of the data, for which the indices are produced.

	Return Ind

	Indices within the spatial scope of MERRA-2 data.

	Return type

	numpy array

	
lib.spatial_functions.subset(A, crd, param)

	This function retrieves a subset of the global MERRA-2 coverage based on weather resolution and the
bounding box coordinates of the spatial scope.

	Parameters

	
	A (numpy array) – Weather data on a global scale.

	param (dict) – Dictionary of parameters containing MERRA-2 coverage and the name of the region.

	Return subset

	The subset of the weather data contained in the bounding box of spatial_scope.

	Return type

	numpy array

physical_models.py

	
lib.physical_models.angles(hour, reg_ind, Crd_all, res_desired, orient)

	This function creates multiple matrices for the whole scope, that represent the incidence, hour angles, declination,
elevation, tilt, azimuth and orientation angles of every pixel with the desired resolution.

	Parameters

	
	hour (int) – Hour rank in a year (from 0 to 8759).

	reg_ind (tuple of arrays) – indices of valid pixels within the spatial scope (pixels on land).

	Crd_all (list) – Coordinates of the bounding box of the spatial scope.

	res_desired (list) – Desired high resolution in degrees.

	orient (int) – Azimuth orientation of the module in degrees.

	Return (phi, omega, delta, alpha, beta, azi, orientation)

	Rasters of latitude, hour, declination, elevation,
tilt, azimuth and orientation angles.

	Return type

	tuple of arrays

	
lib.physical_models.calc_CF_solar(hour, reg_ind, param, merraData, rasterData, tech)

	This function computes the hourly capacity factor for PV and CSP technologies for all valid pixels within
the spatial scope for a given hour.

	Parameters

	
	hour (integer) – Hour within the year (from 0 to 8759).

	reg_ind (tuple of arrays) – indices of valid pixels within the spatial scope (pixels on land).

	param (dict) – Dictionary including the desired resolution, the coordinates of the bounding box of the spatial scope, and technology parameters.

	merraData (dict) – Dictionary of numpy arrays containing the weather data for every point in reg_ind.

	rasterData (dict) – Dictionary of numpy arrays containing land use types, Ross coefficients, albedo coefficients, and wind speed correction for every point in reg_ind.

	tech (str) – Name of the technology ('PV' or 'CSP').

	Return (CF_pv, CF_csp)

	the capacity factors for all the points during that hour for PV and CSP.

	Return type

	tuple (numpy array, numpy array)

	
lib.physical_models.calc_CF_windoff(hour, reg_ind, turbine, m, n, merraData, rasterData)

	This function computes the hourly capacity factor for onshore and offshore wind for all valid pixels within
the spatial scope for a given hour.

	Parameters

	
	hour (integer) – Hour within the year (from 0 to 8759).

	reg_ind (tuple of arrays) – indices of valid pixels within the spatial scope (pixels on land for onshore wind, on sea for offshore wind).

	turbine (dict) – Dictionary including the turbine parameters (cut-in, cut-off and rated wind speed).

	m (int) – number of rows.

	n (int) – number of columns.

	merraData (dict) – Dictionary of numpy arrays containing the weather data for every point in reg_ind.

	rasterData (dict) – Dictionary of numpy arrays containing the wind speed correction for every point in reg_ind.

	Return CF

	Capacity factors for all the valid points during that hour.

	Return type

	numpy array

	
lib.physical_models.calc_CF_windon(hours, turbine, merraData, rasterData)

	This function computes the hourly capacity factor for onshore and offshore wind for all valid pixels within
the spatial scope for a given hour.

	Parameters

	
	hour (integer) – Hour within the year (from 0 to 8759).

	reg_ind (tuple of arrays) – indices of valid pixels within the spatial scope (pixels on land for onshore wind, on sea for offshore wind).

	turbine (dict) – Dictionary including the turbine parameters (cut-in, cut-off and rated wind speed).

	m (int) – number of rows.

	n (int) – number of columns.

	merraData (dict) – Dictionary of numpy arrays containing the weather data for every point in reg_ind.

	rasterData (dict) – Dictionary of numpy arrays containing the wind speed correction for every point in reg_ind.

	Return CF

	Capacity factors for all the valid points during that hour.

	Return type

	numpy array

	
lib.physical_models.coefficients(beta, ratio, R_b, A_i, f)

	This function creates three weighting matrices for the spatial scope with the desired resolution,
that correspond to the gains/losses caused by tilting to each component of the incident irradiance
(direct, diffuse, and reflected).

	Parameters

	
	beta (numpy array) – Raster of tilt angles.

	ratio (numpy array) – Diffuse fraction of global horizontal solar radiation using the Erbs model.

	R_b (numpy array) – Ratio of incident beam to horizontal beam in the HDKR model.

	A_i (numpy array) – Anisotropy index for forward scattering circumsolar diffuse irradiance in the HDKR model.

	f (numpy array) – Modulating factor for horizontal brightening correction.

	Return (F_direct, F_diffuse, F_reflected)

	Rasters of direct, diffuse and reflected ratios of irradiance.

	Return type

	tuple of arrays

	
lib.physical_models.global2diff(k_t, dims)

	This function estimates the global-to-diffuse irradiance ratio using the Erb model.

	Parameters

	
	k_t (numpy array) – Raster of clearness indices.

	dims (tuple) – Dimensions of the output (similar to the dimension of the angles).

	Return A_ratio

	Raster of global-to-diffuse irradiance ratios.

	Return type

	numpy array

	
lib.physical_models.loss(G_tilt_h, TEMP, A_Ross, pv)

	This function creates a temperature loss weighting matrix for the spatial scope.

	Parameters

	
	G_tilt_h (numpy array) – Raster of incident irradiance on the tilted panel.

	TEMP (numpy array) – Raster of ambient temperatures in °C

	A_Ross (numpy array) – Raster of Ross coefficients for temperature sensitivity.

	pv (dict) – Dictionary containing PV-specific parameters for loss coefficient and rated temperature.

	Return LOSS_TEMP

	raster of weighting temperature loss.

	Return type

	numpy array

	
lib.physical_models.toa_hourly(alpha, hour)

	This function returns the top of the atmosphere normal irradiance based on the solar constant, hour rank, and incidence angle.

	Parameters

	
	alpha (numpy array) – Raster of elevation angles.

	hour (int) – Hour rank of the year (from 0 to 8759).

	Return TOA_h

	Raster of the normal top of the atmosphere irradiance.

	Return type

	numpy array

	
lib.physical_models.tracking(axis, A_phi, A_alpha, A_beta, A_azimuth)

	This function computes the tilt angle and orientation based on the type of tracking, incidence, elevation tilt
and azimuth angles.

	Parameters

	
	axis (int) – Number of tracking axes (0, 1, 2). The value 0 means no tracking (fixed rack),
1 means single-axis tracking in east-west dimension, and 2 means double-axis tracking.

	A_phi (numpy array) – Raster of latitude angle.

	A_alpha (numpy array) – Raster of elevation angle.

	A_beta (numpy array) – Raster of tilt angle.

	A_azimuth (numpy array) – Raster of azimuth angle.

	Return (A_orient, A_beta)

	Tuple of rasters for orientationa and tilt angles for specified tracking type.

	Return type

	tuple of arrays

util.py

	
lib.util.arccosd(digit)

	This function calculates the inverse cosine of a number.

	Parameters

	digit (float) – Number between -1 and 1.

	Returns

	The inverse cosine of the number in degrees.

	Return type

	float

	
lib.util.arcsind(digit)

	This function calculates the inverse sine of a number.

	Parameters

	digit (float) – Number between -1 and 1.

	Returns

	The inverse sine of the number in degrees.

	Return type

	float

	
lib.util.arctand(digit)

	This function calculates the inverse tangent of a number.

	Parameters

	digit (float) – Number.

	Returns

	The inverse tangent of the number in degrees.

	Return type

	float

	
lib.util.changeExt2tif(filepath)

	This function changes the extension of a file path to .tif.

	Parameters

	filepath (str) – Path to the file.

	Returns

	New path with .tif as extension.

	Return type

	str

	
lib.util.changem(A, newval, oldval)

	This function replaces existing values oldval in a data array A by new values newval.

oldval and newval must have the same size.

	Parameters

	
	A (numpy array) – Input matrix.

	newval (numpy array) – Vector of new values to be set.

	oldval (numpy array) – Vector of old values to be replaced.

	Return Out

	The updated array.

	Return type

	numpy array

	
lib.util.char_range(c1, c2)

	This function creates a generator to iterate between the characters c1 and c2, including the latter.

	Parameters

	
	c1 (char) – First character in the iteration.

	c2 (char) – Last character in the iteration (included).

	Returns

	Generator to iterate between the characters c1 and c2.

	Return type

	python generator

	
lib.util.cosd(alpha)

	This function calculates the cosine of an angle in degrees.

	Parameters

	alpha (float) – Angle in degrees.

	Returns

	The cosine of the angle.

	Return type

	float

	
lib.util.create_json(filepath, param, param_keys, paths, paths_keys)

	Creates a metadata JSON file containing information about the file in filepath by storing the relevant keys from
both the param and path dictionaries.

	Parameters

	
	filepath (string) – Path to the file for which the JSON file will be created.

	param (dict) – Dictionary of dictionaries containing the user input parameters and intermediate outputs.

	param_keys (list of strings) – Keys of the parameters to be extracted from the param dictionary and saved into the JSON file.

	paths (dict) – Dictionary of dictionaries containing the paths for all files.

	paths_keys (list of strings) – Keys of the paths to be extracted from the paths dictionary and saved into the JSON file.

	Returns

	The JSON file will be saved in the desired path filepath.

	Return type

	None

	
lib.util.display_progress(message, progress_stat)

	This function displays a progress bar for long computations. To be used as part of a loop or with multiprocessing.

	Parameters

	
	message (string) – Message to be displayed with the progress bar.

	progress_stat (tuple(int, int)) – Tuple containing the total length of the calculation and the current status or progress.

	Returns

	The status bar is printed.

	Return type

	None

	
lib.util.field_exists(field_name, shp_path)

	This function returns whether the specified field exists or not in the shapefile linked by a path.

	Parameters

	
	field_name (str) – Name of the field to be checked for.

	shp_path (str) – Path to the shapefile.

	Returns

	True if it exists or False if it doesn’t exist.

	Return type

	bool

	
lib.util.hourofmonth()

	This function calculates the rank within a year of the first hour of each month.

	Returns

	The rank of the first hour of each month.

	Return type

	list

	
lib.util.ind2sub(array_shape, ind)

	This function converts linear indices to subscripts.

	Parameters

	
	array_shape (tuple (int, int)) – Dimensions of the array (# of rows, # of columns).

	ind – Linear index.

	Returns

	Tuple of indices in each dimension (row index, column index).

	Return type

	tuple(int, int)

	
lib.util.intersection(lst1, lst2)

	This function calculates the intersection between two lists.

	Parameters

	
	lst1 (list) – First list of elements.

	lst2 (list) – Second list of elements.

	Return lst3

	The unique elements that exist in both lists, without repetition.

	Return type

	list

	
lib.util.limit_cpu(check)

	This functions sets the priority of a process for CPU time and RAM allocation at two levels: average or below average.

	Parameters

	check (boolean) – If True, the process is set a below average priority rating allowing other programs to run undisturbed.
if False, the process is given the same priority as all other user processes currently running on the machine,
leading to faster calculation times.

	Returns

	The priority of the process is set.

	Return type

	None

	
lib.util.resizem(A_in, row_new, col_new)

	This function resizes regular data grid, by copying and pasting parts of the original array.

	Parameters

	
	A_in (numpy array) – Input matrix.

	row_new (integer) – New number of rows.

	col_new (integer) – New number of columns.

	Return A_out

	Resized matrix.

	Return type

	numpy array

	
lib.util.sind(alpha)

	This function calculates the sine of an angle in degrees.

	Parameters

	alpha (float) – Angle in degrees.

	Returns

	The sine of the angle.

	Return type

	float

	
lib.util.sumnorm_MERRA2(A, m, n, res_low, res_desired)

	This function calculates the average of high resolution data if it is aggregated into a lower resolution.

	Parameters

	
	A (numpy array) – High-resolution data.

	m (int) – Number of rows in the low resolution.

	n (int) – Number of columns in the low resolution.

	res_low (numpy array) – Numpy array with with two numbers. The first number is the resolution in the vertical dimension (in degrees of latitude),
the second is for the horizontal dimension (in degrees of longitude).

	res_desired (numpy array) – Numpy array with with two numbers. The first number is the resolution in the vertical dimension (in degrees of latitude),
the second is for the horizontal dimension (in degrees of longitude).

	Return s

	Aggregated average of A on the low resolution.

	Return type

	numpy array

	
lib.util.tand(alpha)

	This function calculates the tangent of an angle in degrees.

	Parameters

	alpha (float) – Angle in degrees.

	Returns

	The tangent of the angle.

	Return type

	float

	
lib.util.timecheck(*args)

	This function prints information about the progress of the script by displaying the function currently running, and optionally
an input message, with a corresponding timestamp. If more than one argument is passed to the function, it will raise an exception.

	Parameters

	args (string) – Message to be displayed with the function name and the timestamp (optional).

	Returns

	The time stamp is printed.

	Return type

	None

	Raise

	Too many arguments have been passed to the function, the maximum is only one string.

 References

Bibliography

	1

	MERRA-2: File Specification. Note No. 9. URL: http://gmao.gsfc.nasa.gov/pubs/office_notes.

	2

	Danish Wind Industry Association. Wind energy reference manual. 2003.

	3

	John A. Duffie and William A. Beckman. Solar engineering of thermal processes. Wiley, Hoboken, New Jersey, fourth edition edition, 2013. ISBN 9780470873663. URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10683270, doi:10.1002/9781118671603 [https://doi.org/10.1002/9781118671603].

	4

	D. G. Erbs, S. A. Klein, and J. A. Duffie. Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar Energy, 28(4):293–302, 1982. doi:10.1016/0038-092X(82)90302-4 [https://doi.org/10.1016/0038-092X(82)90302-4].

	5

	Ronald Gelaro, Will McCarty, Max J. Suárez, Ricardo Todling, Andrea Molod, Lawrence Takacs, Cynthia A. Randles, Anton Darmenov, Michael G. Bosilovich, Rolf Reichle, Krzysztof Wargan, Lawrence Coy, Richard Cullather, Clara Draper, Santha Akella, Virginie Buchard, Austin Conaty, Arlindo M. da Silva, Wei Gu, Gi-Kong Kim, Randal Koster, Robert Lucchesi, Dagmar Merkova, Jon Eric Nielsen, Gary Partyka, Steven Pawson, William Putman, Michele Rienecker, Siegfried D. Schubert, Meta Sienkiewicz, and Bin Zhao. The modern-era retrospective analysis for research and applications, version 2 (merra-2). Journal of Climate, 30(14):5419–5454, 2017. doi:10.1175/JCLI-D-16-0758.1 [https://doi.org/10.1175/JCLI-D-16-0758.1].

	6

	Martin Kaltschmitt, Wolfgang Streicher, and Andreas Wiese. Renewable Energy: Technology, and Environment Economics. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 9783540709473. URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10229340, doi:10.1007/3-540-70949-5 [https://doi.org/10.1007/3-540-70949-5].

	7

	S. A. Klein. Calculation of monthly average insolation on tilted surfaces. Solar Energy, 19(4):325–329, 1977. doi:10.1016/0038-092X(77)90001-9 [https://doi.org/10.1016/0038-092X(77)90001-9].

	8

	Gilbert M. Masters. Renewable and efficient electric power systems. Wiley-Interscience, Hoboken, 2004. ISBN 9780471280606. doi:10.1002/0471668826 [https://doi.org/10.1002/0471668826].

	9

	Laura Maturi, Giorgio Belluardo, David Moser, and Matteo Del Buono. Bipv system performance and efficiency drops: overview on pv module temperature conditions of different module types. Energy Procedia, 48:1311–1319, 2014. doi:10.1016/j.egypro.2014.02.148 [https://doi.org/10.1016/j.egypro.2014.02.148].

	10

	Douglas T. Reindl. Estimating Diffuse Radiation On Horizontal Surfaces And Total Radiation On Tilted Surfaces: Thesis. PhD thesis, 1988. URL: https://minds.wisconsin.edu/bitstream/1793/47660/1/0001.pdf.

	11

	K. Scharmer and J. Greif. The European solar radiation atlas: Database and Exploitation Software. Volume 2. Presses de l Ecole des Mines, Paris, 2000. ISBN 2911762223.

	12

	B. Stine William and Geyer Michael. Powerfromthesun.net. 2014.

	13

	F. Marion William and P. Dobos Aron. Rotation angle for the optimum tracking of one-axis trackers. 2013. URL: https://www.nrel.gov/docs/fy13osti/58891.pdf.

 Python Module Index

 c |
 l

 		 	

 		
 c	

 	
 	
 config	

 		 	

 		
 l	

 	[image: -]
 	
 lib	

 	
 	
 lib.correction_functions	

 	
 	
 lib.input_maps	

 	
 	
 lib.physical_models	

 	
 	
 lib.potential	

 	
 	
 lib.regression	

 	
 	
 lib.spatial_functions	

 	
 	
 lib.time_series	

 	
 	
 lib.util	

Index

 A
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | W

A

 	
 	adjust_resolution() (in module lib.spatial_functions)

 	aggregate_x_dim() (in module lib.spatial_functions)

 	aggregate_y_dim() (in module lib.spatial_functions)

 	angles() (in module lib.physical_models)

 	
 	arccosd() (in module lib.util)

 	arcsind() (in module lib.util)

 	arctand() (in module lib.util)

 	array2raster() (in module lib.spatial_functions)

C

 	
 	calc_CF_solar() (in module lib.physical_models)

 	calc_CF_windoff() (in module lib.physical_models)

 	calc_CF_windon() (in module lib.physical_models)

 	calc_FLH_solar() (in module lib.potential)

 	calc_FLH_windoff() (in module lib.potential)

 	calc_FLH_windon() (in module lib.potential)

 	calc_gcr() (in module lib.potential)

 	calc_geotiff() (in module lib.spatial_functions)

 	calc_region() (in module lib.spatial_functions)

 	calc_TS_solar() (in module lib.time_series)

 	calc_TS_windoff() (in module lib.time_series)

 	calc_TS_windon() (in module lib.time_series)

 	calculate_full_load_hours() (in module lib.potential)

 	changeExt2tif() (in module lib.util)

 	changem() (in module lib.util)

 	
 	char_range() (in module lib.util)

 	check_regression_model() (in module lib.regression)

 	clean_FLH_regression() (in module lib.regression)

 	clean_IRENA_summary() (in module lib.correction_functions)

 	clean_TS_regression() (in module lib.regression)

 	clean_weather_data() (in module lib.correction_functions)

 	coefficients() (in module lib.physical_models)

 	combinations_for_regression() (in module lib.regression)

 	combinations_for_time_series() (in module lib.time_series)

 	
 config

 	module

 	configuration() (in module config)

 	cosd() (in module lib.util)

 	crd2ind() (in module lib.spatial_functions)

 	crd_merra() (in module lib.spatial_functions)

 	create_json() (in module lib.util)

D

 	
 	define_spatial_scope() (in module lib.spatial_functions)

 	
 	display_progress() (in module lib.util)

 	downloadGWA() (in module lib.input_maps)

F

 	
 	field_exists() (in module lib.util)

 	
 	find_representative_locations() (in module lib.time_series)

G

 	
 	general_settings() (in module config)

 	generate_area() (in module lib.input_maps)

 	generate_area_offshore() (in module lib.input_maps)

 	generate_array_coordinates() (in module lib.input_maps)

 	generate_bathymetry() (in module lib.input_maps)

 	generate_land() (in module lib.input_maps)

 	generate_landuse() (in module lib.input_maps)

 	generate_livestock() (in module lib.input_maps)

 	generate_maps_for_scope() (in module lib.input_maps)

 	generate_osm_areas() (in module lib.input_maps)

 	generate_protected_areas() (in module lib.input_maps)

 	generate_protected_areas_offshore() (in module lib.input_maps)

 	
 	generate_sea() (in module lib.input_maps)

 	generate_settlements() (in module lib.input_maps)

 	generate_slope() (in module lib.input_maps)

 	generate_time_series_for_regions() (in module lib.time_series)

 	generate_time_series_for_representative_locations() (in module lib.time_series)

 	generate_time_series_for_specific_locations() (in module lib.time_series)

 	generate_topography() (in module lib.input_maps)

 	generate_weather_files() (in module lib.input_maps)

 	generate_weather_offshore_files() (in module lib.input_maps)

 	generate_wind_correction() (in module lib.correction_functions)

 	get_merra_raster_data() (in module lib.potential)

 	get_regression_coefficients() (in module lib.regression)

 	global2diff() (in module lib.physical_models)

H

 	
 	hourofmonth() (in module lib.util)

I

 	
 	ind2crd() (in module lib.spatial_functions)

 	ind2sub() (in module lib.util)

 	
 	ind_global() (in module lib.spatial_functions)

 	ind_merra() (in module lib.spatial_functions)

 	intersection() (in module lib.util)

L

 	
 	
 lib.correction_functions

 	module

 	
 lib.input_maps

 	module

 	
 lib.physical_models

 	module

 	
 lib.potential

 	module

 	
 lib.regression

 	module

 	
 	
 lib.spatial_functions

 	module

 	
 lib.time_series

 	module

 	
 lib.util

 	module

 	limit_cpu() (in module lib.util)

 	loss() (in module lib.physical_models)

M

 	
 	mask_potential_maps() (in module lib.potential)

 	
 module

 	config

 	lib.correction_functions

 	lib.input_maps

 	lib.physical_models

 	lib.potential

 	lib.regression

 	lib.spatial_functions

 	lib.time_series

 	lib.util

P

 	
 	pyomo_regression_model() (in module lib.regression)

R

 	
 	read_generated_TS() (in module lib.regression)

 	redistribution_array() (in module lib.potential)

 	
 	regmodel_load_data() (in module lib.regression)

 	report_potentials() (in module lib.potential)

 	resizem() (in module lib.util)

S

 	
 	sampled_sorting() (in module lib.potential)

 	sind() (in module lib.util)

 	
 	subset() (in module lib.spatial_functions)

 	sumnorm_MERRA2() (in module lib.util)

T

 	
 	tand() (in module lib.util)

 	timecheck() (in module lib.util)

 	
 	toa_hourly() (in module lib.physical_models)

 	tracking() (in module lib.physical_models)

W

 	
 	weight_potential_maps() (in module lib.potential)

 _images/Stratified_TS_diagram.png
Mode 1= {"High" : [Q 90, Q70]}

Mode 2 = {"Low" : [Q 60, Q 40]}

Region B

Coefficients
Combo = {"all" : [Hub Height 1, Hub Height 2]}
f—)%
Hub Height 1 Hub Height 2
Hub Helght 1__Hub Helght 2_
g1 0.23622 021267 |
2 '
el o L T - Combined
gl 0.06473 012806 |
T
g1 0.02078 0.27026 !

High

Low

Stratified Time Series

Sos
B
o
S“
{5 vana vgn)
. L
hourof o year
o
8o
Zoe
gouf
©o
o
S0 sm suo s s si0

hour of the year

_images/landuse.png
.

1000 km

Land use

Landuse classification

B Water

Bl Evergreen Needle leaf Forest
I Evergreen Broadleaf Forest
Bl Deciduous Needle leaf Forest
Bl Deciduous Broadleaf Forest
B Mixed Forests

I Closed Shrublands

I Open Shrublands

] Woody Savannas

I Savannas

| Grasslands

I Permanent Wetland

___| Croplands

B Urban and Built-Up

| Cropland/Natural Vegetation Mosaic
1 Snow and Ice

___| Barren or Sparsely Vegetated

_images/FLH_wind.png
Onshore wind potential

Full-Load Hours (kWh/kWp)
1500

11500

12500

I 3500

Bl 4500

Il 5500

1000 km
|

_images/FLH_wind_weighted.png
1000 km

Vo

Onshore wind potential after weighting

Energy density (MWh/pixel)
10

1250

[500

Bl 750

Il 1000

_images/topography.png
R il

1000 km

Topography

Elevation (m)
10
1500
I 1000
Il 1500
Hl >2000

_images/pyGRETA_logo.png
Py
GRETA

_images/regression_graphic.png
Region A

Generated Time Series

Hub height 1 Hub height 2
Q98
Regression
Q49
Q12

FLH= 4300 hiyear

Coefficients
Hub Height 1 Hub Height 2
g 0412025 0.42924
2| 0.01572 0.25098
S| 0.00332 0.09049

_static/file.png

_images/AustraliaQ50WindvsSolar.png
Capacity Factor
o o o o
o b R B > o

4380

4400

4420

Australia - Capacity Factor for Solar PV and Wind Onshore - Q50

LA A.A ARA

4440

4460
hour of the year

4480

4500

4520

eV
Wind On

4540

_images/FLH_solar.png
500

1000 km

Solar PV potential

Full-Load Hours (kWh/kWp)
[1500

11000

I 1500

Bl 2000

_images/FLH_solar_masked.png
500

1000 km

Solar PV potential after masking

Full-Load Hours (kWh/kWp)
1500

771 1000

I 1500

Il 2000

_static/minus.png

nav.xhtml

 Table of Contents

 		
 pyGRETA

 		
 User manual

 		
 Installation

 		
 config.py

 		
 Main configuration function

 		
 User preferences

 		
 Paths

 		
 runme.py

 		
 Recommended input sources

 		
 Weather data from MERRA-2

 		
 Raster of Mean Wind Speed

 		
 Raster of land use

 		
 Shapefile of the region of interest

 		
 Shapefile of countries

 		
 Shapefile of Exclusive Economic Zones (EEZ)

 		
 Shapefile of Internal Waters

 		
 Raster of topography / elevation data

 		
 Raster of bathymetry

 		
 Shapefile of protected areas

 		
 Airports Coordinates

 		
 Shapefiles from OSM data

 		
 Raster of Settlement Footprint

 		
 Shapefile of HydroLakes

 		
 Shapefile of HydroRivers

 		
 Data of Crop Production

 		
 Data of Forestry Production

 		
 Shapefile of Livestock density

 		
 Recommended workflow

 		
 Input raster maps

 		
 Potential maps and reports

 		
 Time series for quantiles and user-defined locations

 		
 Regression

 		
 Stratified time series

 		
 Theory

 		
 Solar

 		
 Solar Angles

 		
 Solar Power

 		
 PV

 		
 CSP

 		
 Wind

 		
 Wind Speed

 		
 Wind Shear

 		
 Wind Power

 		
 Implementation

 		
 initialization.py

 		
 input_maps.py

 		
 potential.py

 		
 time_series.py

 		
 regression.py

 		
 correction_functions.py

 		
 spatial_functions.py

 		
 physical_models.py

 		
 util.py

 		
 Bibliography

_static/plus.png

