
normal [LE,RO]1 [LO] [RE] [LE,RO],

pyGRETA

Kais Siala
Houssame Houmy

Sergio Alejandro Huezo Rodriguez

Version 1.0.1

Apr 20, 2022

Contents

1 User manual 1
1.1 Installation . 1
1.2 config.py . 2

1.2.1 Main configuration function . 2
1.2.2 User preferences . 3
1.2.3 Paths . 8

1.3 runme.py . 11
1.4 Recommended input sources . 13

1.4.1 Weather data from MERRA-2 . 13
1.4.2 Raster of Mean Wind Speed . 14
1.4.3 Raster of land use . 14
1.4.4 Shapefile of the region of interest . 14
1.4.5 Shapefile of countries . 15
1.4.6 Shapefile of Exclusive Economic Zones (EEZ) . 15
1.4.7 Shapefile of Internal Waters . 15
1.4.8 Raster of topography / elevation data . 15
1.4.9 Raster of bathymetry . 15
1.4.10 Shapefile of protected areas . 15
1.4.11 Airports Coordinates . 15
1.4.12 Shapefiles from OSM data . 15
1.4.13 Raster of Settlement Footprint . 16
1.4.14 Shapefile of HydroLakes . 16
1.4.15 Shapefile of HydroRivers . 16
1.4.16 Data of Crop Production . 16
1.4.17 Data of Forestry Production . 16
1.4.18 Shapefile of Livestock density . 16

1.5 Recommended workflow . 16
1.5.1 Input raster maps . 17
1.5.2 Potential maps and reports . 17
1.5.3 Time series for quantiles and user-defined locations . 21
1.5.4 Regression . 21
1.5.5 Stratified time series . 21

2 Theory 23
2.1 Solar . 23

2.1.1 Solar Angles . 23
2.1.2 Solar Power . 25
2.1.3 PV . 26
2.1.4 CSP . 27

2.2 Wind . 28
2.2.1 Wind Speed . 28
2.2.2 Wind Shear . 28
2.2.3 Wind Power . 28

3 Implementation 31
3.1 initialization.py . 31
3.2 input_maps.py . 31

i

3.3 potential.py . 36
3.4 time_series.py . 39
3.5 regression.py . 42
3.6 correction_functions.py . 45
3.7 spatial_functions.py . 46
3.8 physical_models.py . 48
3.9 util.py . 51

Bibliography 55

Python Module Index 57

Index 59

ii

Chapter 1

User manual

1.1 Installation

Note: We assume that you are familiar with git and conda.

First, clone the git repository in a directory of your choice using a Command Prompt window:

$ ~\directory-of-my-choice> git clone https://github.com/tum-ens/pyGRETA.git

We recommend using conda and installing the environment from the file ren_ts_new.yml that you can find in
the repository. In the Command Prompt window, type:

$ cd pyGRETA\env\
$ conda env create -f ren_ts_new.yml

Then activate the environment:

$ conda activate ren_ts_new

In the folder code, you will find multiple files:

File Description
config.py used for configuration, see below.
runme.py main file, which will be run later using python runme.py.
lib\initialization.py used for initialization.
lib\input_maps.py used to generate input maps for the scope.
lib\potential.py contains functions related to the potential estimation.
lib\time_series.py contains functions related to the generation of time series.
lib\regression.py contains functions related to the regression.
lib\spatial_functions.py contains helping functions related to maps, coordinates and in-

dices.
lib\physical_models.py contains helping functions for the physical/technological model-

ing.
lib\correction_functions.py contains helping functions for data correction/cleaning.
lib\util.py contains minor helping functions and the necessary python li-

braries to imported.

1

https://git-scm.com/downloads
https://docs.conda.io/projects/conda/en/latest/user-guide/install/download.html

, Release 1.1.0

1.2 config.py

This file contains the user preferences, the links to the input files, and the paths where the outputs should be saved.
The paths are initialized in a way that follows a particular folder hierarchy. However, you can change the hierarchy
as you wish.

1.2.1 Main configuration function

config.configuration(config_file)
This function is the main configuration function that calls all the other modules in the code.

Return (paths, param) The dictionary paths containing all the paths to inputs and outputs, and
the dictionary param containing all the user preferences.

Return type tuple(dict, dict)

config.general_settings()
This function creates and initializes the dictionaries param and paths. It also creates global variables for the
root folder root, and the system-dependent file separator fs.

Return (paths, param) The empty dictionary paths, and the dictionary param including some
general information.

Return type tuple(dict, dict)

Note: Both param and paths will be updated in the code after running the function config.configuration.

Note: root points to the directory that contains all the inputs and outputs. All the paths will be defined relatively
to the root, which is located in a relative position to the current folder.

The code differentiates between the geographic scope and the subregions of interest. You can run the first part of
the script runme.py once and save results for the whole scope, and then repeat the second part using different
subregions within the scope.

config.scope_paths_and_parameters(paths, param, config_file)
This function defines the path of the geographic scope of the output spatial_scope and of the subregions of
interest subregions. Both paths should point to shapefiles of polygons or multipolygons. It also associates
two name tags for them, respectively region_name and subregions_name, which define the names of output
folders.

• For spatial_scope, only the bounding box around all the features matters. Example: In case of Europe,
whether a shapefile of Europe as one multipolygon, or as a set of multiple features (countries, states,
etc.) is used, does not make a difference. Potential maps (theoretical and technical) will be later
generated for the whole scope of the bounding box.

• For subregions, the shapes of the individual features matter, but not their scope. For each individual
feature that lies within the scope, you can later generate a summary report and time series. The
shapefile of subregions does not have to have the same bounding box as spatial_scope. In case it
is larger, features that lie completely outside the scope will be ignored, whereas those that lie partly
inside it will be cropped using the bounding box of spatial_scope. In case it is smaller, all features are
used with no modification.

• year defines the year of the input data.

• technology defines the list of technologies that you are interested in. Currently, four technologies are
defined: onshore wind 'WindOn', offshore wind 'WindOff', photovoltaics 'PV', concentrated
solar power 'CSP'.

Parameters

2 Chapter 1. User manual

, Release 1.1.0

• paths (dict) – Dictionary including the paths.

• param (dict) – Dictionary including the user preferences.

Return (paths, param) The updated dictionaries paths and param.

Return type tuple(dict, dict)

Note: We recommend using a name tag that describes the scope of the bounding box of the regions of interest.
For example, 'Europe' and 'Europe_without_Switzerland' will actually lead to the same output for
the first part of the code.

Note: As of version 1.1.0, it is possible to use different technologies in the same run, but not the same technology
with different settings.

Warning: If you intend to use the wind correction feature relying on the Global Wind Atlas, it is recom-
mended that spatial_scope covers all the countries that you are interested in, because the correction is done
on a country-level. Also, you have to download the data from the Global Wind Atlas for each country that lies
within the scope, even partially, and put it in the corresponding location.

1.2.2 User preferences

config.computation_parameters(param)
This function defines parameters related to the processing:

• nproc is an integer that limits the number of parallel processes (some modules in potential.py
and time_series.py allow parallel processing).

• CPU_limit is a boolean parameter that sets the level of priority for all processes in the multiprocess-
esing. Leave True if you plan on using the computer while FLH and TS are being computed, False
for fastest computation time.

Parameters param (dict) – Dictionary including the user preferences.

Return param The updated dictionary param.

Return type dict

config.resolution_parameters(param)
This function defines the resolution of weather data (low resolution), and the desired resolution of output
rasters (high resolution). Both are numpy arrays with two numbers. The first number is the resolution in
the vertical dimension (in degrees of latitude), the second is for the horizontal dimension (in degrees of
longitude).

Parameters param (dict) – Dictionary including the user preferences.

Return param The updated dictionary param.

Return type dict

Note: As of version 1.1.0, these settings should not be changed. Only MERRA-2 data can be used in the tool. Its
spatial resolution is 0.5° of latitudes and 0.625° of longitudes. The high resolution is 15 arcsec in both directions.

config.csp_parameters(param)
This function sets the parameters for concentrated solar power in the dictionary csp inside param:

• resource is a dictionary including the parameters related to the resource potential:

1.2. config.py 3

https://globalwindatlas.info/

, Release 1.1.0

– clearness_correction is a factor that will be multiplied with the clearness index matrix to correct
it. If no correction is required, leave it equal to 1.

• technical is a dictionary including the parameters related to the module:

– T_avg_HTF is the average temperature in °C of the heat transfer fluid between the inlet and outlet
of the solar field.

– loss_coeff is the the heat loss coefficient in W/(m2K), which does not depend on wind speed
(relevant for physical_models.calc_CF_solar).

– loss_coeff_wind is the the heat loss coefficient in W/(m2K(m/s)^0.6), which depends on wind
speed (relevant for physical_models.calc_CF_solar).

– Flow_coeff is a factor smaller than 1 for the heat transfer to the HTF (Flow or heat removal
factor).

– AbRe_ratio is the ratio between the receiver area and the concentrator aperture.

– Wind_cutoff is the maximum wind speed for effective tracking in m/s.

• mask is a dictionary including the parameters related to the masking:

– slope is the threshold slope in percent. Areas with a larger slope are excluded.

– lu_suitability is a numpy array of values 0 (unsuitable) or 1 (suitable). It has the same size as the
array of land use types.

– pa_suitability is a numpy array of values 0 (unsuitable) or 1 (suitable). It has the same size as the
array of protected area categories.

• weight is a dictionary including the parameters related to the weighting:

– lu_availability is a numpy array of values between 0 (completely not available) and 1 (completely
available). It has the same size as the array of land use types.

– pa_availability is a numpy array of values between 0 (completely not available) and 1 (completely
available). It has the same size as the array of protected area categories.

– power_density is the power density of CSP projects in MW/m2.

– f_performance is a number smaller than 1, taking into account all the other losses from the CSP
module until the AC substation.

Parameters param (dict) – Dictionary including the user preferences.

Return param The updated dictionary param.

Return type dict

config.file_saving_options(param)
This function sets some options for saving files.

• savetiff is a boolean that determines whether tif rasters for the potentials are saved (True), or whether
only mat files are saved (False). The latter are saved in any case.

• report_sampling is an integer that sets the sample size for the sorted FLH values per region (relevant
for potential.reporting).

Parameters param (dict) – Dictionary including the user preferences.

Return param The updated dictionary param.

Return type dict

config.landuse_parameters(param)

This function sets the land use parameters in the dictionary landuse inside param:

• type is a numpy array of integers that associates a number to each land use type.

4 Chapter 1. User manual

, Release 1.1.0

• type_urban is the number associated to urban areas (useful for input_maps.
generate_buffered_population).

• Ross_coeff is a numpy array of Ross coefficients associated to each land use type (relevant
for physical_models.loss).

• albedo is a numpy array of albedo coefficients between 0 and 1 associated to each land use
type (relevant for reflected irradiation, see physical_models.calc_CF_solar).

• hellmann is a numpy array of Hellmann coefficients associated to each land use type (rele-
vant for correction_functions.generate_wind_correction).

param param Dictionary including the user preferences.

type param dict

return param The updated dictionary param.

rtype dict

Landuse reclassification # 0 No data # 10 Cropland, rain-fed # 11 Herbaceous cover # 12 Tree or shrub
cover # 20 Cropland, irrigated or post-flooding # 30 Mosaic cropland (>50%) / natural vegetation
(tree, shrub, herbaceous cover) (<50%) # 40 Mosaic natural vegetation (tree, shrub, herbaceous cover)
(>50%) / cropland (<50%) # 50 Tree cover, broadleaved, evergreen, closed to open (>15%) # 60
Tree cover, broadleaved, deciduous, closed to open (>15%) # 61 Tree cover, broadleaved, deciduous,
closed (>40%) # 62 Tree cover, broadleaved, deciduous, open (15-40%) # 70 Tree cover, needleleaved,
evergreen, closed to open (>15%) # 71 Tree cover, needleleaved, evergreen, closed (>40%) # 72 Tree
cover, needleleaved, evergreen, open (15-40%) # 80 Tree cover, needleleaved, deciduous, closed to
open (>15%) # 81 Tree cover, needleleaved, deciduous, closed (>40%) # 82 Tree cover, needleleaved,
deciduous, open (15-40%) # 90 Tree cover, mixed leaf type (broadleaved and needleleaved) # 100
Mosaic tree and shrub (>50%) / herbaceous cover (<50%) # 110 Mosaic herbaceous cover (>50%)
/ tree and shrub (<50%) # 120 Shrubland # 121 Shrubland evergreen # 122 Shrubland deciduous #
130 Grassland # 140 Lichens and mosses # 150 Sparse vegetation (tree, shrub, herbaceous cover)
(<15%) # 151 Sparse tree (<15%) # 152 Sparse shrub (<15%) # 153 Sparse herbaceous cover (<15%)
160 Tree cover, flooded, fresh or brakish water # 170 Tree cover, flooded, saline water # 180 Shrub
or herbaceous cover, flooded, fresh/saline/brakish water # 190 Urban areas # 200 Bare areas # 201
Consolidated bare areas # 202 Unconsolidated bare areas # 210 Water bodies # 220 Permanent snow
and ice

config.offshore_wind_paramters(param)
This function sets the parameters for offshore wind in the dictionary windoff inside param:

• resource is a dictionary including the parameters related to the resource potential:

– res_correction is either 1 (perform a redistribution of wind speed when increasing the res-
olution) or 0 (repeat the same value from the low resolution data). It is relevant for
correction_functions.generate_wind_correction.

• technical is a dictionary including the parameters related to the wind turbine:

– w_in is the cut-in speed in m/s.

– w_r is the rated wind speed in m/s.

– w_off is the cut-off wind speed in m/s.

– P_r is the rated power output in MW.

– hub_height is the hub height in m.

• mask is a dictionary including the parameters related to the masking:

– depth is the threshold depth in meter (negative number). Areas that are deeper are excluded.

– pa_suitability is a numpy array of values 0 (unsuitable) or 1 (suitable). It has the same size as the
array of protected area categories.

• weight is a dictionary including the parameters related to the weighting:

1.2. config.py 5

, Release 1.1.0

– power_density is the power density of offshore wind projects in MW/m2.

– f_performance is a number smaller than 1, taking into account all the other losses from the turbine
generator until the AC substation.

Parameters param (dict) – Dictionary including the user preferences.

Return param The updated dictionary param.

Return type dict

config.onshore_wind_parameters(param)
This function sets the parameters for onshore wind in the dictionary windon inside param:

• resource is a dictionary including the parameters related to the resource potential:

– res_correction is either 1 (perform a redistribution of wind speed when increasing the res-
olution) or 0 (repeat the same value from the low resolution data). It is relevant for
correction_functions.generate_wind_correction.

– topo_correction is either 1 (perform a correction of wind speed based on the altitude and the
Global Wind Atlas) or 0 (no correction based on altitude).

– topo_weight is only relevant if topo_correction = 1. It defines how to weight the correction factors
of each country. There are three options: 'none' (all countries have the same weight), 'size'
(larger countries have a higher weight), or 'capacity' (countries with a higher installed ca-
pacity according to IRENA have a higher weight).

• technical is a dictionary including the parameters related to the wind turbine:

– w_in is the cut-in speed in m/s.

– w_r is the rated wind speed in m/s.

– w_off is the cut-off wind speed in m/s.

– P_r is the rated power output in MW.

– hub_height is the hub height in m.

• mask is a dictionary including the parameters related to the masking:

– slope is the threshold slope in percent. Areas with a larger slope are excluded.

– lu_suitability is a numpy array of values 0 (unsuitable) or 1 (suitable). It has the same size as the
array of land use types.

– pa_suitability is a numpy array of values 0 (unsuitable) or 1 (suitable). It has the same size as the
array of protected area categories.

– buffer_pixel_amount is an integer that defines the number of pixels making a buffer of exclusion
around urban areas.

• weight is a dictionary including the parameters related to the weighting:

– lu_availability is a numpy array of values between 0 (completely not available) and 1 (completely
available). It has the same size as the array of land use types.

– pa_availability is a numpy array of values between 0 (completely not available) and 1 (completely
available). It has the same size as the array of protected area categories.

– power_density is the power density of onshore wind projects in MW/m2.

– f_performance is a number smaller than 1, taking into account all the other losses from the turbine
generator until the AC substation.

Parameters param (dict) – Dictionary including the user preferences.

Return param The updated dictionary param.

Return type dict

6 Chapter 1. User manual

, Release 1.1.0

config.protected_areas_parameters(param)
This function sets the parameters for protected areas in the dictionary protected_areas inside param:

• type is a numpy array of integers that associates a number to each protection type.

• IUCN_Category is an array of strings with names associated to each protection type (for your infor-
mation).

Parameters param (dict) – Dictionary including the user preferences.

Return param The updated dictionary param.

Return type dict

config.time_series_parameters(param)
This function determines the time series that will be created.

• quantiles is a list of floats between 100 and 0. Within each subregion, the FLH values will be sorted,
and points with FLH values at a certain quantile will be later selected. The time series will be created
for these points. The value 100 corresponds to the maximum, 50 to the median, and 0 to the minimum.

• regression is a dictionary of options for regression.regression_coefficients:

– solver is the name of the solver for the regression.

– WindOn is a dictionary containing a list of hub heights that will be considered in the regression,
with a name tag for the list.

– WindOff is a dictionary containing a list of hub heights that will be considered in the regression,
with a name tag for the list.

– PV is a dictionary containing a list of orientations that will be considered in the regression, with
a name tag for the list.

– CSP is a dictionary containing a list of settings that will be considered in the regression, with a
name tag for the list.

If all the available settings should be used, you can leave an empty list.

• modes is a dictionary that groups the quantiles and assigns names for each subgroup. You can define
the groups as you wish. If you want to use all the quantiles in one group without splitting them in
subgroups, you can write:

param["modes"] = {"all": param["quantiles"]}

• combo is a dictionary of options for time_series.generate_stratified_timeseries:

– WindOn is a dictionary containing the different combinations of hub heights for which stratified
time series should be generated, with a name tag for each list.

– WindOff is a dictionary containing the different combinations of hub heights for which stratified
time series should be generated, with a name tag for each list.

– PV is a dictionary containing the different combinations of orientations for which stratified time
series should be generated, with a name tag for each list.

– CSP is a dictionary containing the different combinations of settings for which stratified time
series should be generated, with a name tag for each list.

If all the available settings should be used, you can leave an empty list.

Parameters param (dict) – Dictionary including the user preferences.

Return param The updated dictionary param.

Return type dict

1.2. config.py 7

, Release 1.1.0

config.weather_data_parameters(param)
This function defines the coverage of the weather data MERRA_coverage, and how outliers should be cor-
rected using MERRA_correction:

• MERRA_coverage: If you have downloaded the MERRA-2 data for the world, enter the name tag
'World'. The code will later search for the data in the corresponding folder. It is possible to
download the MERRA-2 just for the geographic scope of the analysis. In that case, enter another
name tag (we recommend using the same one as the spatial scope).

• MERRA_correction: MERRA-2 contains some outliers, especially in the wind data.
MERRA_correction sets the threshold of the relative distance between the yearly mean of the
data point to the yearly mean of its neighbors.

Parameters param (dict) – Dictionary including the user preferences.

Return param The updated dictionary param.

Return type dict

1.2.3 Paths

config.emhires_input_paths(paths, tech)
This function defines the path to the EMHIRES input file for each technology (only 'WindOn',
'WindOff', and 'PV' are supported by EMHIRES).

Parameters

• paths (dict) – Dictionary including the paths.

• param (dict) – Dictionary including the user preferences.

• tech (string) – Name of the technology.

Return paths The updated dictionary paths.

Return type dict

config.global_maps_input_paths(paths, param)
This function defines the paths where the global maps are saved:

• LU_global for the land use raster

• Topo_tiles for the topography tiles (rasters)

• Pop_global for the global population raster

• Bathym_global for the bathymetry raster

• Protected for the shapefile of protected areas

• GWA for the country data retrieved from the Global Wind Atlas (missing the country code, which will
be filled in a for-loop in :mod:correction_functions.calc_gwa_correction)

• Countries for the shapefiles of countries

• EEZ_global for the shapefile of exclusive economic zones of countries

Parameters paths (dict) – Dictionary including the paths.

Return paths The updated dictionary paths.

Return type dict

config.irena_paths(paths, param)
This function defines the paths for the IRENA inputs and outputs:

• IRENA is a csv file containing statistics for all countries and technologies for a specific year, created
using a query tool of IRENA.

8 Chapter 1. User manual

, Release 1.1.0

• IRENA_dict is a csv file to convert the code names of countries from the IRENA database to the
database of the shapefile of countries.

• IRENA_summary is a csv file with a summary of renewable energy statistics for the countries within
the scope.

Parameters

• paths (dict) – Dictionary including the paths.

• param (dict) – Dictionary including the user preferences.

Return paths The updated dictionary paths.

Return type dict

config.local_maps_paths(paths, param)
This function defines the paths where the local maps will be saved:

• LAND for the raster of land areas within the scope

• EEZ for the raster of sea areas within the scope

• SUB for the raster of areas covered by subregions (both land and sea) within the scope

• LU for the land use raster within the scope

• BATH for the bathymetry raster within the scope

• TOPO for the topography raster within the scope

• SLOPE for the slope raster within the scope

• PA for the raster of protected areas within the scope

• POP for the population raster within the scope

• BUFFER for the raster of population buffer areas within the scope

• CORR_GWA for correction factors based on the Global Wind Atlas (mat file)

• CORR_ON for the onshore wind correction factors (raster)

• CORR_OFF for the offshore wind correction factors (raster)

• AREA for the area per pixel in m2 (mat file)

Parameters

• paths (dict) – Dictionary including the paths.

• param (dict) – Dictionary including the user preferences.

Return paths The updated dictionary paths.

Return type dict

config.output_folders(paths, param)
This function defines the paths to multiple output folders:

• region is the main output folder.

• weather_data is the output folder for the weather data of the spatial scope.

• local_maps is the output folder for the local maps of the spatial scope.

• potential is the output folder for the ressource and technical potential maps.

• regional_analysis is the output folder for the time series and the report of the subregions.

• regression_in is the folder where the regression parameters (FLH, fitting time series) are saved.

• regression_out is the output folder for the regression results.

All the folders are created at the beginning of the calculation, if they do not already exist,

1.2. config.py 9

, Release 1.1.0

Parameters

• paths (dict) – Dictionary including the paths.

• param (dict) – Dictionary including the user preferences.

Return paths The updated dictionary paths.

Return type dict

config.potential_output_paths(paths, param, tech)
This function defines the paths of the files that will be saved in the folder for the potential outputs:

• FLH is the file with the full-load hours for all pixels within the scope (mat file).

• mask is the file with the suitable pixels within the scope (mat file).

• FLH_mask is the file with the full-load hours for the suitable pixels within the scope (mat file).

• weight is the power density for all the pixels in the scope (mat file).

• FLH_weight is the potential energy output for all the pixels in the scope (mat file).

Parameters

• paths (dict) – Dictionary including the paths.

• param (dict) – Dictionary including the user preferences.

• tech (string) – Name of the technology.

Return paths The updated dictionary paths.

Return type dict

config.regional_analysis_output_paths(paths, param, tech)
This function defines the paths of the files that will be saved in the folder for the regional analysis outputs:

• Locations is the shapefile of points that correspond to the selected quantiles in each subregion, for
which the time series will be generated.

• TS is the csv file with the time series for all subregions and quantiles.

• Region_Stats is the csv file with the summary report for all subregions.

• Sorted_FLH is the mat file with the sorted samples of FLH for each subregion.

• Regression_coefficients is the path format for a csv files containing the regression coefficients found
by the solver

• Regression_TS is the path format for a csv files with the regression resulting timeseries for the tech
and settings

Parameters

• paths (dict) – Dictionary including the paths.

• param (dict) – Dictionary including the user preferences.

• tech (string) – Name of the technology.

Return paths The updated dictionary paths.

Return type dict

config.regression_paths(paths, param, tech)
This function defines the paths for the regression parameters:

• FLH_regression is a csv file containing FLH statistics for the subregions and the four technologies for
a specific year, based on the previously created IRENA_summary.

• TS_regression is a csv file containing time series to be match for each subregion and technology, based
on EMHIRES time series if available.

10 Chapter 1. User manual

, Release 1.1.0

Parameters paths (dict) – Dictionary including the paths.

Return paths The updated dictionary paths.

Return type dict

config.weather_input_folder(paths, param)
This function defines the path MERRA_IN where the MERRA-2 data is saved. It depends on the coverage
of the data and the year.

Parameters

• paths (dict) – Dictionary including the paths.

• param (dict) – Dictionary including the user preferences.

Return paths The updated dictionary paths.

Return type dict

config.weather_output_paths(paths, param)
This function defines the paths to weather filesfor a specific year:

• W50M is the file for the wind speed at 50m in m/s.

• CLEARNESS is the file for the clearness index, e.g. the ratio between total ground horizontal radiation
and total top-of-the-atmosphere horizontal radiation.

• T2M is the file for the temperature at 2m in Kelvin.

Parameters

• paths (dict) – Dictionary including the paths.

• param (dict) – Dictionary including the user preferences.

Return paths The updated dictionary paths.

Return type dict

1.3 runme.py

runme.py calls the main functions of the code:

1 import lib.correction_functions as cf
2 import lib.spatial_functions as sf
3 import lib.input_maps as im
4 import lib.potential as pl
5 from lib.log import logger
6 import initialization as ii
7 import lib.time_series as ts
8 import lib.regression as rg
9 import os

10 import psutil
11

12 if __name__ == "__main__":
13

14 # logger.setLevel(logging.DEBUG) # Comment out to get more information on
→˓the console

15

16 if psutil.virtual_memory().available > 50*10**9: # Check if memory size is
→˓large enough for multiprocessing

17 multiprocessing = True
18 else:
19 multiprocessing = False
20 logger.info('Multiprocessing: ' + str(multiprocessing))

(continues on next page)

1.3. runme.py 11

, Release 1.1.0

(continued from previous page)

21

22 configs = sorted(os.listdir('../configs'))
23 for config in configs: # Iterate over all config files for each country

→˓in folder 'configs'
24

25 try: # only interrupt current country run in case of failure
26 logger.info('Started: ' + str(config))
27

28 paths, param = ii.initialization(config) # Initialize for each
→˓country with the corresponding config defined in folder 'configs'

29

30 im.downloadGWA(paths, param) # Download wind speed data from Global
→˓Wind Atlas

31 im.generate_maps_for_scope(paths, param, multiprocessing) #
→˓Generate input raster maps

32

33 cf.generate_wind_correction(paths, param)
34

35 for tech in param["technology"]:
36 logger.info("Tech: " + tech)
37 if tech == "Biomass":
38 im.generate_livestock(paths,param)
39 pl.generate_biomass_production(paths, param, tech)
40 pl.report_biomass_potentials(paths, param, tech)
41

42 else:
43 # Generate potential maps and reports
44 pl.calculate_full_load_hours(paths, param, tech,

→˓multiprocessing)
45 pl.mask_potential_maps(paths, param, tech)
46 pl.weight_potential_maps(paths, param, tech)
47 pl.report_potentials(paths, param, tech)
48

49 # Generate time series
50 # ts.find_representative_locations(paths, param, tech)
51 # ts.generate_time_series_for_representative_locations(paths,

→˓param, tech)
52 # ts.generate_time_series_for_specific_locations(paths, param,

→˓tech)
53

54 # for tech in param["technology"]:
55 # logger.info("Tech: " + tech)
56

57 # Generate regression coefficients for FLH and TS model matching
58 # rg.get_regression_coefficients(paths, param, tech)
59

60 # Generate times series for combinations of technologies and
→˓locations

61 # ts.generate_time_series_for_regions(paths, param, tech)
62 except Exception:
63 logger.info("General exception noted!", exc_info=True)

12 Chapter 1. User manual

, Release 1.1.0

1.4 Recommended input sources

For a list of GIS data sources, check this wikipedia article.

1.4.1 Weather data from MERRA-2

The most important inputs within this model are the weather time series. These are taken from the Modern-Era
Retrospective Analysis for Research and Applications, version 2 (MERRA-2), which is the latest atmospheric
reanalysis of the modern satellite era produced by NASA’s Global Modeling and Assimilation Office (GMAO)
[5]. The parameters taken from MERRA-2 are:

• Global Horizontal Irradiance (GHI): Downward shortwave radiation received by a surface horizontal to the
ground (SWGDN in MERRA-2 nomenclature).

• Top of the Atmosphere Irradiance (TOA): Downward shortwave radiation at the top of the atmosphere
(SWTDN in MERRA-2 nomenclature).

• Air temperature 2 meters above the ground (T2M).

• Northward wind velocity at 50 meters (V50M).

• Eastward wind velocity at 50 meters (U50M).

The GHI and TOA data are time-averaged hourly values given in W/m while T2M data are instantaneous values in
Kelvin. V50M and U50M are instantaneous hourly values given in m/s.

The spatial arrangement of the data consists of a global horizontal grid structure with a resolution of 576 points in
the longitudinal direction and 361 points in the latitudinal direction, resulting in pixels of 5/8° longitude and 1/2°
latitude [1].

It is possible to download MERRA-2 dataset for the whole globe or just for a subset of your region of interest.
Depending on the MERRA_coverage parameter in config.py, the script can accept both datasets. Note that down-
loading the coverage for the whole globe is easier but will require a significant amount of space on your drive
(coverage of the whole globe requires 13.6 Gb for one year).

In both cases, please follow these instructions to download the MERRA-2 dataset:

1. In order to download MERRA-2 data using the FTP server, you first need to create an Eathdata account
(more on that on their website).

2. Navigate to the link for the FTP sever here.

3. In Data Product, choose tavg1_2d_slv_NX and select the Parameters T2M, U50M, V50M to downaload
the temperature and the wind speed datasets.

4. In Spatial Search, enter the coordinates of the bounding box around your region of interest or leave the
default values for the whole globe. To avoid problems at the edge of the MERRA-2 cells, use the following
set of formulas:

𝑚𝑖𝑛𝐿𝑎𝑡 =

⌊︂
𝑠 + 0.25

0.5

⌋︂
· 0.5 − 𝜖

𝑚𝑎𝑥𝐿𝑎𝑡 =

⌈︂
𝑛− 0.25

0.5

⌉︂
· 0.5 + 𝜖

𝑚𝑖𝑛𝐿𝑜𝑛 =

⌊︂
𝑤 + 0.3125

0.625

⌋︂
· 0.625 − 𝜖

𝑚𝑎𝑥𝐿𝑜𝑛 =

⌈︂
𝑒− 0.3125

0.625

⌉︂
· 0.625 + 𝜖

where [s n w e] are the southern, northern, western, and eastern bounds of the region of interest, which you
can read from the shapefile properties in a GIS software, and
𝑒𝑝𝑠𝑖𝑙𝑜𝑛 a small number.

5. In Temporal Order Option, choose the year(s) of interest.

1.4. Recommended input sources 13

https://en.wikipedia.org/wiki/List_of_GIS_data_sources
https://disc.gsfc.nasa.gov/data-access
https://disc.gsfc.nasa.gov/daac-bin/FTPSubset2.pl

, Release 1.1.0

6. Leave the other fields unchanged (no time subsets, no regridding, and NetCDF4 for the output file format).

7. Repeat the steps 4-6 for the Data Product tavg1_2d_rad_Nx, for which you select the Parameters SWGDN
and SWTDN, the surface incoming shortwave flux and the top of the atmosphere incoming shortwave flux.

8. Follow the instructions in the website to actually download the NetCDF4 files from the urls listed in the text
files you obtained.

If you follow these steps to download the data for the year 2015, you will obtain 730 NetCDF files, one for each
day of the year and for each data product.

1.4.2 Raster of Mean Wind Speed

High resolution (250m) country-wise rasters of mean wind speed from Global wind atlas website will be automat-
ically downloaded by the tool.

1.4.3 Raster of land use

Another important input for this model is the land use type. A land use map is useful in the sense that other
parameters can be associated with different landuse types, namely:

• Urban areas

• Ross coefficients

• Hellmann coefficients

• Albedo

• Suitability

• Installation cost

• etc.

For each land use type, we can assign a value for these parameters which affect the calculations for solar power
and wind speed correction. The global land use raster for which lib.input_maps.generate_landuse
has been written can be downloaded from the ESA CCI website. However, this new version requires additional
data processing. The spatial resolution of the land use raster downloaded is 300m, but the resolution used in the
model is 250m. So the landuse raster should be resampled in a GIS software. QGIS can be used easily for doing
this.

1.4.4 Shapefile of the region of interest

The strength of the tool relies on its versatility, since it can be used for any user-defined regions provided in a
shapefile. If you are interested in administrative divisions, you may consider downloading the shapefiles from the
website of the Global Administration Divisions (GADM). You can also create your own shapefiles using a GIS
software.

Warning: In any case, you need to have at least one attribute called NAME_SHORT containing a string (array
of characters) designating each sub-region.

14 Chapter 1. User manual

https://disc.gsfc.nasa.gov/data-access
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
https://gadm.org/download_country_v3.html

, Release 1.1.0

1.4.5 Shapefile of countries

A shapefile of all the countries of the world is also needed. It can be downloaded again from GADM. The attribute
“GID_0” contains the ISO 3166-1 Alpha-3 codes of the countries, and is currently hard coded in the script.

Warning: If you want to use another source or other code names, you need to edit the name of the attribute
“GID_0” and the dictionary dict_countries.csv.

1.4.6 Shapefile of Exclusive Economic Zones (EEZ)

A shapefile of the maritime boundaries of all countries is available at the website of the Flanders Marine Institute
(VLIZ). It is used to identify offshore areas.

1.4.7 Shapefile of Internal Waters

A shapefile of the internal waters boundaries of all countries is available at the website of the Flanders Marine
Institute (VLIZ). It is used to identify offshore areas.

1.4.8 Raster of topography / elevation data

A high resolution raster (15 arcsec = 1/240° longitude and 1/240° latitude) made of 24 tiles can be downloaded
from viewfinder panoramas. Multiple files will be downloaded from this source. They can all be merged and
resampled to the resolution of the model (250m) using QGIS, similar to the landuse raster.

1.4.9 Raster of bathymetry

A high resolution raster (60 arcsec) of bathymetry can be downloaded from the website of the National Oceanic
and Atmospheric Administration (NOAA). The one used in the database is ETOPO1 Ice Surface, cell-registered.

1.4.10 Shapefile of protected areas

Any database for protected areas can be used with this tool, in particular the World Database on Protected Areas
published by the International Union for Conservation of Nature (IUCN). The shapefile has many attributes, but
only one is used in the tool: “IUCN_CAT”. If another database is used, an equivalent attribute with the different
categories of the protection has to be used and config.py has to be updated accordingly.

1.4.11 Airports Coordinates

List of airports around the world can be downloaded as a csv file from open data (openflights).

1.4.12 Shapefiles from OSM data

Open Street Map data can be downloaded as shapefiles from geofabrik. The shapefiles for roads, railways and
landuse are used in this model. These shapefiles have many attributes, but only one is used in the tool: “fclass”.
For roads shapefile, the “fclass” types “Motoways, motorways_link, primary, primary-link, secondary, secondary-
link, trunk, trunk-link” are filtered prior to using the model. For railways shapefile, no filtering is necessary. For
landuse shapefile, the “fclass” types “commercial, industrial, quarry, military, park, recreation_ground” are filtered
prior to using the model. If another exclusion criteria is used, config.py has to be updated accordingly.

1.4. Recommended input sources 15

https://gadm.org/download_world.html
http://www.vliz.be/en/imis?dasid=5465&doiid=312
http://www.vliz.be/en/imis?module=dataset&dasid=5469
http://viewfinderpanoramas.org/Coverage%20map%20viewfinderpanoramas_org15.htm
https://ngdc.noaa.gov/mgg/global/global.html
https://www.protectedplanet.net/
https://openflights.org/data.html
https://download.geofabrik.de/

, Release 1.1.0

1.4.13 Raster of Settlement Footprint

A high resolution raster (0.32 arcsec or 10m) of World settlement footprint can be downloaded from open source.
The downloaded multiple files need to be merged and resampled to the desired resolution (250m) of the model
prior to the run.

1.4.14 Shapefile of HydroLakes

Any database for Lakes can be used with this tool, in particular from HydroSheds. No preprocessing is necessary
for this dataset.

1.4.15 Shapefile of HydroRivers

Any database for Rivers can be used with this tool, in particular from HydroSheds. No preprocessing is necessary
for this dataset.

1.4.16 Data of Crop Production

Annual crop production data of all countries in the world can be downloaded from the website of Food and Agri-
culture Organization of United States (FAOSTAT). While downloading, the latest year and “Production Quantity”
should be selected as filters.

1.4.17 Data of Forestry Production

Annual forestry production data of all countries in the world can be downloaded from the website of Food and
Agriculture Organization of United States (FAOSTAT). While downloading, the latest year and “Production Quan-
tity” should be selected as filters.

1.4.18 Shapefile of Livestock density

Any dataset for Livestock density can be used with this tool, in particular the rasters created from the data of Food
and Agriculture Organization of United States for various animals (FAO GLW3). These files are available at high
resolution (5 arc-minutes). The model can read these high resolution rasters and resample them to the resolution
of the model.

1.5 Recommended workflow

The script is designed to be modular and split into four main modules: lib.input_maps, lib.potential,
lib.time_series, and lib.regression.

Warning: The outputs of each module serve as inputs to the following module. Therefore, the user will have
to run the script sequentially.

The recommended use cases of each module will be presented in the order in which the user will have to run them.

1. Input raster maps

2. Potential maps and reports

3. Time series for quantiles and user-defined locations

4. Regression

16 Chapter 1. User manual

https://figshare.com/articles/dataset/World_Settlement_Footprint_WSF_2015/10048412
https://www.hydrosheds.org/page/hydrolakes
https://www.hydrosheds.org/page/hydrorivers
https://www.fao.org/faostat/en/#data/QCL
https://www.fao.org/faostat/en/#data/FO
https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1236449/

, Release 1.1.0

5. Stratified time series

The use cases associated with each module with examples of their outputs are presented below.

It is recommended to thoroughly read through the configuration file config.py and modify the input paths and
computation parameters before starting the runme.py script. Once the configuration file is set, open the runme.py
file to define what use case you will be using the script for.

1.5.1 Input raster maps

The lib.input_maps module is used to generate data (mostly raster maps, but also arrays in MAT files) for
the spatial scope defined by the user. These data sets include:

• Weather data

• Land and sea masking

• Bathymetry

• Topography

• Slope

• Area

• Land use and buffer masking

• Protected areas and their buffer masking

• Boarder Buffer masking

• Airports and buffer masking

• Roads Buffer masking

• Railway lines Buffer masking

• OSM defined areas like mining, military zones Buffer masking

• Settlement regions Buffer masking

• HydroLakes Buffer masking

• HydroRivers Buffer masking

• Livestock density

All these maps are needed before the potential or time series modules can be used for a specific spatial scope.

1.5.2 Potential maps and reports

The lib.potential module serves to generate potential raster maps for all four technologies supported by
the script. This module generates a Full-Load Hour (FLH) raster map, masking and masked rasters for unsuitable
and protected areas, and a weighting and weighted raster used for energy and power potential calculations. It also
generates a CSV report containing metrics for each subregion:

• Available number of pixels, before and after masking

• Available area in in km2

• FLH mean, median, max, min values, before and after masking

• FLH standard deviation after masking

• Power Potential in GW, before and after weighting

• Energy Potential in TWh in total, after weighting, and after masking and weighting

• Sorted sample of FLH values for each region

1.5. Recommended workflow 17

, Release 1.1.0

Fig. 1: Land Use Raster Map - Australia

Fig. 2: Topography Raster Map - Australia

18 Chapter 1. User manual

, Release 1.1.0

Fig. 3: FLH of solar PV - Australia

Fig. 4: FLH of onshore wind - Australia

1.5. Recommended workflow 19

, Release 1.1.0

Fig. 5: FLH of solar PV after masking - Australia

Fig. 6: Energy output of onshore wind after weighting - Australia

20 Chapter 1. User manual

, Release 1.1.0

Sample of potential report:

Region Available area (km2)
Region A 4315.7
Region B 2128.3
Region C 561.3
Region D 100953.1
Region E 10.2
Region F 2829.8

FLH mean FLH max FLH min Masked FLH mean Masked FLH max Masked FLH min Power potential (GW) Energy potential (TWh)
1638.4 1686.3 1578.0 1644.3 1686.3 1589.7 6.5 10.8
1682.9 1699.7 1601.6 1684.2 1695.0 1613.7 1.4 2.4
1849.7 1853.4 1833.8 1849.6 1853.3 1840.8 0.9 1.7
2017.6 2090.5 1986.8 2018.0 2086.1 1986.8 183.7 369.8
1856.8 1857.1 1856.5 1856.8 1857.1 1856.5 0.0 0.0
1729.5 1772.2 1659.1 1731.4 1772.2 1659.1 4.8 8.3

1.5.3 Time series for quantiles and user-defined locations

The lib.time_series module allows to generate time series for quantiles as well as user-defined locations
based on the FLH raster maps generated in the previously mentioned module. It is therefore important for the FLH
raster maps to be generated first, in order to locate the quantiles. However, generating time series for user-defined
locations does not require the potential maps to be generated beforehand.

Fig. 7: Wind Onshore and Solar PV capacity factor time series for quantile 50 - Australia

1.5.4 Regression

Once a set of time series for different settings (hub heights for wind technologies, orientations for solar PV) is
generated, the lib.regression module allows the user to find a combination of settings and quantiles in order
to match a known FLH value and a given (typical) time series. The output is a set of regression coefficients that
should be multiplied with the time series.

1.5.5 Stratified time series

Part of the lib.time_series module, the lib.time_series.
generate_time_series_for_regions function reads the regression coefficients and the generated
time series, and combines them into user-defined modes (combinations of quantiles) and combos (combinations
hub height or orientations settings).

Example: - Graphic of Modes and Combos

1.5. Recommended workflow 21

, Release 1.1.0

Fig. 8: Regression Coefficients - Process example Region A

Fig. 9: Stratified Time Series - Process example Region A

22 Chapter 1. User manual

Chapter 2

Theory

2.1 Solar

2.1.1 Solar Angles

While the output power of the Sun is usually considered as a constant, the amount of power arriving at the Earth’s
surface varies according to the time, location, weather, and relative position of the Earth with respect to the Sun.
Besides, the available data needed for a solar power calculation is usually given for a horizontal surface and
most of the PV systems are placed in a tilted position. Therefore, it is necessary to calculate a set of parameters
describing the Sun’s relative position with respect to the position of the system being irradiated. These parameters
are calculated for points located at the center of every pixel (with high resolution) within the extension under
analysis and for every hour of the year.

Declination Angle 𝛿

This angle varies during the year due to the tilt of the Earth’s axis, which is 23.45° tilted, so the declination ranges
between -23.4° and 23.45° through the year. The declination could be interpreted as the latitude where the Sun’s
rays perpendicularly strike the Earth’s surface at solar noon. This value is the same for all the locations within the
globe for a given day and is calculated as follows [11]:

𝛿 = arcsin

(︂
0.3978 sin

(︁ 2𝜋𝑁

365.25
− 1.4 + 0.0355 sin

(︁ 2𝜋𝑁

365.25
− 0.0489

)︁)︁)︂
where N is the day of the year.

Solar Time

The time is important to define the position of the Sun in the sky. However, it is easier to use the time if it is
converted into solar time. To do so, a few corrections are needed. The equation of time is an empirical equation
which corrects the error caused by the axial tilt of the Earth and the eccentricity of its orbit [11]:

𝐸𝑂𝑇 = −0.128 sin
(︁ 360

365.25
𝑁 − 2.8

)︁
− 0.165 sin

(︁ 720

365.25
𝑁 + 19.7

)︁
When the time is given in GMT, as it is for this model, it is also necessary to take into account the longitude of the
location, hence the time correction:

𝑇𝐶 = 𝐸𝑂𝑇 + 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒/15

where the factor 15 accounts for the geographical span of each time zone (15° of longitude). With this correction,
the local solar time is calculated as:

𝐿𝑆𝑇 = 𝑇𝐺𝑀𝑇 + 𝑇𝐶

23

, Release 1.1.0

where LST is the local solar time. An even more apporpriate time measure for solar calculations is the hour angle
𝜔 This converts hours into degrees which indicate how the Sun moves in the sky relatively to the Earth, where the
solar noon is 0°, the anlges after the noon positive, and before the noon negative.

𝜔 = 15(𝐿𝑆𝑇 − 12)

Another important quantity is the duration of the day, which is delimited by the sunrise and the sunset. The sunrise
and sunset have the same value, however, the sunrise is considered negative and the sunset positive. They depend
on the day of the year and the location on the Earth (denoted by the declination and the latitude 𝜑 respectively)
and they are calculated for a horizontal surface as follows [7]:

𝜔𝑠 = arccos(− tan𝜑 tan 𝛿)

Due to self-shading, a tilted plane might be exposed to different sunrise and sunset’s values. Also, if the plane is
not facing the equator, the sunrise and sunset angles will be numerically different for such surfaces. The following
equations consider this orientation changes for the sunrise and sunset values of a tilted plane [7].

𝑎 =
cos𝜑

tan𝛽
+ sin𝜑

𝑏 = tan 𝛿 cos𝜑 cos 𝛾 − sin𝜑

tan𝛽

𝜔′
𝑠 = cos

[︁𝑎𝑏± sin 𝛾
√︀
𝑎2 − 𝑏2 + sin2 𝛾

𝑎2 + sin2 𝛾

]︁
where 𝛾 is the azimuthal orientation of the panel and 𝛽 is the tilt of the panel (for this model, chosen as the optimal
tilt according to the latitude). These equations might give higher values than the real sunrise and sunset values.
This would imply that the Sun rises over the tilted plane before it has risen over the horizon or that when the Sun
sets, there is still light striking the plane. As this is wrong, the sunrise and sunset values for a horizontal plane
must be compared with the values for a tilted plane and the lower values (for both sunrise and sunset) must be
selected.

𝜔0 = min(𝜔𝑠, 𝜔
′
𝑠)

Incidence Angle 𝜃

As stated before, PV panels are not normally parallel to the Earth’s surface, so it is necessary to calculate the
incidence angle of the Sun’s rays striking the surface of the panel. Nevertheless, a set of angles must be calculated
in order to calculate the incidence angle.

The elevation angle 𝛼 or altitude angle measures the angular distance between the Sun and the horizon. It ranges
from 0° at the sunrise to 90° at the noon (the value at the noon varies depending on the day of the year) [12].

𝛼 = arcsin[sin 𝛿 sin𝜑 + cos 𝛿 cos𝜑 cos𝜔]

The azimuth angle 𝐴𝑧 is an angular measurement of the horizontal position of the Sun. It could be seen as a
compass direction with 0° to the North and 180° to the South. The range of values of the azimuth angle varies
over the year, going from 90° at the sunrise to 270° at the sunset during the equinoxes. The equation for the
azimuth depends on the time of the day. For the solar morning, it is [12]:

𝐴𝑧𝑎𝑚 = arccos
(︁ sin 𝛿 cos𝜑− cos 𝛿 sin𝜑 cos𝜔

cos𝛼

)︁
and for the afternoon:

𝐴𝑧𝑝𝑚 = 360 −𝐴𝑧𝑎𝑚

With the already calculated angles, it is possible to calculate the incidence angle, which is the angle between the
surface’s normal and the Sun’s beam radiation [10]:

𝜃𝑖 = arccos(sin 𝛿 sin𝜑 cos𝛽

− sin 𝛿 cos𝜑 sin𝛽 cos 𝛾

+ cos 𝛿 cos𝜑 cos𝛽 cos𝜔

+ cos 𝛿 sin𝜑 sin𝛽 cos 𝛾 cos𝜔

+ cos 𝛿 sin𝛽 sin 𝛾 sin𝜔)

24 Chapter 2. Theory

, Release 1.1.0

Tracking

When one-axis tracking is active, the tilt angle 𝛽 and the azimuthal orientation 𝛾 of the panel change constantly
as the panel follows the sun. In this model a tilted on-axis tracking with east-west tracking is considered. The
rotation of the plane around the axis is deffned by the rotation angle R, it is calculated in order to achieve the
smallest incidence angle for the plane by the following equations [13]:

𝑋 =
− cos𝛼 sin(𝐴𝑧 − 𝛾𝑎)

− cos𝛼 cos(𝐴𝑧 − 𝛾𝑎) sin𝛽𝑎 + sin𝛼 cos𝛽𝑎

Ψ =

⎧⎪⎨⎪⎩
0, if 𝑋 = 0, or if 𝑋 > 0 ∧ (𝐴𝑧 − 𝛾𝑎) > 0, or if 𝑋 < 0 ∧ (𝐴𝑧 − 𝛾𝑎) < 0

180, if 𝑋 < 0 ∧ (𝐴𝑧 − 𝛾𝑎) > 0

−180, if 𝑋 > 0 ∧ (𝐴𝑧 − 𝛾𝑎) < 0

for the previous equations, 𝛽𝑎 and 𝛾𝑎 are considered as the tilt and azimuthal orientation of the tracking axis
respectively. The variable Ψ places R in the correct trigonometric quadrant. For the selection of Ψ, the difference
(𝐴𝑧 − 𝛾𝑎) must be considered as the angular displacement with the result within the range of -180°to 180°. Once
the rotation angle is calculated, the tilt and azimuthal orientation of the panel are calculated as follows:

𝛽 = arccos(cos𝑅 cos𝛽𝑎)

𝛾 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛾𝑎 + arcsin

(︁ sin𝑅

sin𝛽

)︁
, for 𝛽𝑎 ̸= 0,−90 ≤ 𝑅 ≤ 90

𝛾𝑎 − 180 − arcsin
(︁ sin𝑅

sin𝛽

)︁
, for − 180 ≤ 𝑅 < −90

𝛾𝑎 + 180 − arcsin
(︁ sin𝑅

sin𝛽

)︁
, for 90 < 𝑅 ≤ −90

Then the incidence angle is calculated using the new 𝛽 and 𝛾 angles. For two-axis tracking the beta angle is
considered as the complementary angle to the altitude angle while the azimuthal orientation angle 𝛾 is considered
as 𝐴𝑧 − 180.

2.1.2 Solar Power

To calculate the solar power we must start with the solar constant. However, the irradiance striking the top of the
Earth’s atmosphere (TOA) varies over the year. This is due to the eccentricity of the Earth’s orbit and its tilted
axis. The TOA is calculated according to the following equation [10]:

𝑇𝑂𝐴 = 𝐺𝑠𝑐

[︁
1 + 0.03344 cos

(︁ 2𝜋𝑁

365.25
− 0.048869

)︁]︁
sin𝛼

where 𝐺𝑠𝑐 is the solar constant (1367 W/m2) and N is the day of the year. This equation escalates the solar
constant by multiplying it with a factor related to the eccentricity of the Earth’s orbit and the sinus of the altitude
angle of the Sun to finally get the extraterrestrial horizontal radiation.

To calculate the amount of horizontal radiation at the surface of the Earth, the attenuation caused by the atmosphere
must be considered. A way to measure this attenuation is by using the clearness index 𝑘𝑡. This value is the ratio
between the extraterrestrial horizontal radiation and the radiation striking the Earth’s surface:

𝑘𝑡 =
𝐺𝐻𝐼𝑀2

𝑇𝑂𝐴𝑀2

where 𝐺𝐻𝐼𝑀2 and 𝑇𝑂𝐴𝑀2 are the global horizontal irradiance and the top of the atmosphere radiation extracted
from MERRA-2 data. Furthermore, the GHI is made-up by diffuse and beam radiation:

𝐺𝐻𝐼 = 𝐺𝑏 + 𝐺𝑑

where 𝐺𝑏 is the beam radiation, which is the solar radiation that travels directly to the Earth’s surface without any
scattering in the atmosphere, and 𝐺𝑑 stands forfor the diffuse radiation, the radiation that comes to a surface from
all directions as its trajectory is changed by the atmosphere. These two components have different contributions
to the total irradiance on a tilted surface, so it is necessary to distinguish between them. This can be done using

2.1. Solar 25

, Release 1.1.0

the correlation of Erbs et al [4], which calculates the ratio R of the beam and diffuse radiation as a function of the
clearness index.

𝑅 =

⎧⎪⎨⎪⎩
1 − 0.09𝑘𝑡, for 𝑘𝑡 ≤ 0.22

0.9511 − 0.1604𝑘𝑡 + 4.388𝑘2𝑡 − 16.638𝑘3𝑡 + 12.336𝑘4𝑡 , for 0.22 > 𝑘𝑡 ≤ 0.8

0.165, for 𝑘𝑡 > 0.8

Furthermore, diffuse radiation could be divided into more components. The HDKR model [3][10], developed
by Hay, Davies, Klucher, and Reindl in 1979 assumes isotropic diffuse radiation, which means that the diffuse
radiation is uniformly distributed across the sky. However, it also considers a higher radiation intensity around the
Sun, the circumsolar diffuse radiation, and a horizontal brightening correction. To use the HDKR model, some
factors must be defined first [10]. The ratio of incident beam to horizontal beam:

𝑅𝑏 =
cos 𝜃𝑖
sin𝛼

The anisotropy index for forward scattering circumsolar diffuse irradiance:

𝐴𝑖 = (1 −𝑅)𝑘𝑡

The modulating factor for horizontal brightening correction:

𝑓 =
√

1 −𝑅

Then the total radiation incident on the surface is calculated with the next equations:

𝐺𝐻𝐼 = 𝑘𝑡𝑇𝑂𝐴

𝐺𝑇 = 𝐺𝐻𝐼
[︁
(1 −𝑅 + 𝑅𝐴𝑖)𝑅𝑏 + 𝑅(1 −𝐴𝑖)

(︁1 + cos𝛽

2

)︁(︁
1 + 𝑓 sin3 𝛽

2

)︁
+ 𝜌𝑔

(︁1 − cos𝛽

2

)︁]︁
Where 𝜌𝑔 is the ground reflectance or albedo and it is related to the land use type of the location under analysis. The
first term of this equation corresponds to the beam and circumsolar diffuse radiation, the second to the isotropic
and horizon brightening radiation, and the last one to the incident ground-reflected radiation.

2.1.3 PV

Temperature losses

In a PV panel, not all the radiation absorbed is converted into current. Some of this radiation is dissipated into
heat. Solar cells, like all other semiconductors, are sensitive to temperature. An increase of temperature results in
a reduction of the band gap of the solar cell which is translated into a reduction of the open circuit voltage. The
overall effect is a reduction of the power output of the PV system. To calculate the power loss of a solar cell it is
necessary to know its temperature. This can be expressed as a function of the incident radiation and the ambient
temperature [9]:

𝑇𝑐𝑒𝑙𝑙 = 𝑇𝑎𝑚𝑏 + 𝑘𝐺𝑇

where 𝑇𝑎𝑚𝑏 is the ambient temperature and k is the Ross coefficient, which depends on the characteristics related
to the module and its environment. It is defined based on the land use type of the region where the panel is located.
With the temperature of the panel, the fraction of the irradiated power which is lost can be calculated as:

𝐿𝑜𝑠𝑠𝑇 = (𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑟)𝑇𝑘

where 𝑇𝑟 is the rated temperature of the module according to standard test conditions and 𝑇𝑘 is the heat loss
coefficient. Both values are usually given on the data sheets of the PV modules.

26 Chapter 2. Theory

, Release 1.1.0

PV Capacity Factor Calculation

It is the ratio of the actual power output to the theoretical maximum output which is normally considered as
1000𝑊/𝑚2. The temperature loss is also considered for this calculation:

𝐶𝐹𝑃𝑉 =
𝐺𝑇 (1 − 𝐿𝑜𝑠𝑠𝑇)

1000

Ground coverage ratio (GCR)

It is also important to consider the area lost due to the space between the modules or due to the modules shading
adjacent modules. This is done with the GCR which is the ratio of the module area to the total ground area.

𝐺𝐶𝑅 =
1

cos𝛽 + | cos𝐴𝑧| ·
(︁ sin𝛽

tan𝛼

)︁

2.1.4 CSP

For its popularity and long development history, the parabolic trough technology was chosen to model Concen-
trated Solar power.

Convection Losses

The receiver of parabolic troughs are kept in a vacuum glass tube to prevent convection as much as possible.
Radiative heat losses are still present and ultimatly results in convective losses between the glass tube and the air.
These heat losses are increased when wind is blowing around the receiver. The typical heat losses for a receiver
can be estimated through the following empirical equation [3]:

𝑄𝐿𝑜𝑠𝑠 = 𝐴𝑟(𝑈𝐿𝑐𝑠𝑡
+ 𝑈𝐿𝑊𝑖𝑛𝑑

· 𝑉 0.6
𝑊𝑖𝑛𝑑)(𝑇𝑖 − 𝑇𝑎)

where 𝐴𝑟 is the outer area of the receiver, 𝑈𝐿𝑐𝑠𝑡 correspond to a loss coefficient at zero wind speed, 𝑈𝐿𝑊𝑖𝑛𝑑
is a

loss coefficient dependent on the wind speed 𝑉𝑊𝑖𝑛𝑑, 𝑇𝑖 is the average heat transfer fluid temperature, and 𝑇𝑎 is
the ambient temperature.

Typical values for the 𝑈𝐿𝑐𝑠𝑡 and 𝑈𝐿𝑊𝑖𝑛𝑑
are 1.06 𝑘𝑊/𝑚2𝐾 and 1.19 𝑘𝑊/(𝑚2𝐾(𝑚/𝑠)0.6) respectively

Flow Losses

Flow loss coefficient or heat removal factor 𝐹𝑟 is the ratio between the actual heat transfer to the maximum heat
transfer possible between the receiver and the heat transfer fluid (HTF). These losses result from the difference
between the temperature of the receiver and the temperature of the HTF and are dependent on the heat capacity
and the flow rate of the HTF. A typical value for parabolic troughs is 95%.

CSP Capacity Factor Calculation

The capacity factor of a solar field is the ratio of the actual useful heat collected to the theoretical maximum heat
output of 1000 W/m2. It is given by the formula:

𝐶𝐹𝑐𝑠𝑝 =
𝐹𝑟(𝑆 −𝑄𝐿𝑜𝑠𝑠)

1000

Where 𝑆 is the component of the DNI captured by the collector at an angle (based on one axis traking), 𝑄𝐿𝑜𝑠𝑠 is
the heat convection losses, and 𝐹𝑟 is the heat removal factor.

2.1. Solar 27

, Release 1.1.0

2.2 Wind

2.2.1 Wind Speed

In order to use a single value for the following wind power calculations, a norm is calculated as if both variables
were vectors, so the absolute velocity is:

𝑊50𝑀 =
√︀

𝑉 50𝑀2 + 𝑈50𝑀2

However, the wind velocities extracted from MERRA-2 are given for a height of 50 meters, which does not
correspond to the hub height of the wind turbines; therefore, they must be extrapolated.

2.2.2 Wind Shear

While the wind is hardly affected by the Earth’s surface at a height of about one kilometer, at lower heights in
the atmosphere the friction of the Earth’s surface reduces the speed of the wind [2]. One of the most common
expressions describing this phenomenon is the Hellmann exponential law, which correlates the wind speed at two
different heights [6].

𝑣 = 𝑣0

(︁ 𝐻

𝐻0

)︁𝛼

Where 𝑣 is the wind speed at a height 𝐻 , 𝑣0 is the wind speed at a height 𝐻0 and 𝛼 is the Hellmann coefficient,
which is a function of the topography and air stability at a specific location.

2.2.3 Wind Power

The wind turbines convert the kinetic energy of the air into torque. The power that a turbine can extract from the
wind is described by the following expression [8]:

𝑃 =
1

2
𝜌𝐴𝑣3𝐶𝑝

where 𝜌 is the density of the air, 𝑣 is the speed of the wind and 𝐶𝑝 is the power cofficient. As it is shown in the
previous equation, the energy in the wind varies proportionally to the cube of the wind’s speed. Therefore, the
power output of wind turbines is normally described with cubic power curves. However, there are some regions
within those curves which have special considerations.

Cut-in wind speed

The wind turbines start running at a wind speed between 3 and 5 m/s to promote torque and acceleration. There-
fore, there is no power generation before this velocity.

Rated Wind Speed

The power output of a wind turbine rises with the wind speed until the power output reaches a limit defined by the
characteristics of the electric generator. Beyond this wind speed, the design and the controllers of the wind turbine
limit the power output so this does not increase with further increases of wind speed.

28 Chapter 2. Theory

, Release 1.1.0

Cut-out wind speed

The wind turbines are programmed to stop at wind velocities above their rated maximum wind speed(usually
around 25 m/s) to avoid damage to the turbine and its surroundings, so there is no power generation after this
velocity.

Wind Onshore and Offshore Capacity factor

Finally, the capacity factors, which are the ratios of the actual power output to the theoretical maximum output
(rated wind speed), are calculated according to the previously presented regions:

𝐶𝐹 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑊 3

ℎ𝑢𝑏 −𝑊 3
𝑖𝑛

𝑊 3
𝑟 −𝑊 3

𝑖𝑛

, for 𝑊𝑖𝑛 < 𝑊ℎ𝑢𝑏 < 𝑊𝑟

1, for 𝑊𝑟 ≤ 𝑊ℎ𝑢𝑏 ≤ 𝑊𝑜𝑢𝑡

0, for 𝑊ℎ𝑢𝑏 < 𝑊𝑖𝑛|𝑊ℎ𝑢𝑏 > 𝑊𝑜𝑢𝑡

where 𝑊𝑖𝑛 is the cut-out wind speed, and 𝑊𝑟 is the rated wind speed. The area is not included in the previous
equations as it does not change in both generation states (actual and theoretical maximum power). While the
density could vary for both states, the overall impact of a change in density is negligible compared to the wind
speed and therefore is not included in the calculation.

2.2. Wind 29

, Release 1.1.0

30 Chapter 2. Theory

Chapter 3

Implementation

You can run the code by typing:

$ python runme.py

The script runme.py calls the main functions of the code, which are explained in the following sections.

3.1 initialization.py

3.2 input_maps.py

lib.input_maps.downloadGWA(paths, param)
This function downloads wind speed data from Global Wind Atlas (www.globalwindatlas.info) if it does
not already exist

Parameters

• paths (dict) – Dictionary including the paths.

• param (dict) – Dictionary including the user preferences.

Returns The wind data is saved directly in the desired paths.

Return type None

lib.input_maps.generate_area(paths, param)
This function retreives the coordinates of the spatial scope and computes the pixel area gradient of the
corresponding raster.

Parameters

• paths (dict) – Dictionary of dictionaries containing the path to the output file.

• param (dict) – Dictionary of dictionaries containing spatial scope coordinates and
desired resolution.

Returns The mat file for AREA is saved in its respective path, along with its metadata in a
JSON file.

Return type None

lib.input_maps.generate_area_offshore(paths, param)
This function retreives the coordinates of the spatial scope and computes the pixel area gradient of the
corresponding raster.

Parameters

• paths (dict) – Dictionary of dictionaries containing the path to the output file.

31

, Release 1.1.0

• param (dict) – Dictionary of dictionaries containing spatial scope coordinates and
desired resolution.

Returns The mat file for AREA is saved in its respective path, along with its metadata in a
JSON file.

Return type None

lib.input_maps.generate_array_coordinates(paths, param, W50M)
ToDo: All of this docstring This function reads the daily NetCDF data (from MERRA-2) for SWGDN,
SWTDN, T2M, U50m, and V50m, and saves them in matrices with yearly time series with low spatial res-
olution. Depending on the MERRA_correction parameter this function will also call clean_weather_data()
to remove data outliers. This function has to be run only once.

Parameters

• paths (dict) – Dictionary including the paths to the MERRA-2 input files
MERRA_IN, and to the desired output locations for T2M, W50M and CLEARNESS.

• param (dict) – Dictionary including the year, the spatial scope, and the
MERRA_correction parameter.

Returns The files T2M.mat, W50M.mat, and CLEARNESS.mat are saved directly in the de-
fined paths, along with their metadata in JSON files.

Return type None

lib.input_maps.generate_bathymetry(paths, param)
This function reads the global map of bathymetry, resizes it, and creates a raster out of it for the desired
scope. The values are in meter (negative in the sea).

Parameters

• paths (dict) – Dictionary including the paths to the global bathymetry raster
Bathym_global and to the output path BATH.

• param (dict) – Dictionary including the desired resolution, the coordinates of the
bounding box of the spatial scope, and the georeference dictionary.

Returns The tif file for BATH is saved in its respective path, along with its metadata in a JSON
file.

Return type None

lib.input_maps.generate_land(paths, param)
This function reads the shapefile of the subregions within the scope, and creates a raster out of it.

Parameters

• paths (dict) – Dictionary including the paths SUB, LAND, EEZ.

• param (dict) – Dictionary including the geodataframe of the shapefile, the number
of features, the coordinates of the bounding box of the spatial scope, and the number of
rows and columns.

Returns The tif file for SUB is saved in its respective path, along with its metadata in a JSON
file.

Return type None

lib.input_maps.generate_landuse(paths, param)
This function reads the global map of land use, and creates a raster out of it for the desired scope. There are
17 discrete possible values from 0 to 16, corresponding to different land use classes. See config.py for
more information on the land use map.

Parameters

• paths (dict) – Dictionary including the paths to the global land use raster LU_global
and to the output path LU.

32 Chapter 3. Implementation

, Release 1.1.0

• param (dict) – Dictionary including the desired resolution, the coordinates of the
bounding box of the spatial scope, and the georeference dictionary.

Returns The tif file for LU is saved in its respective path, along with its metadata in a JSON
file.

Return type None

lib.input_maps.generate_livestock(paths, param)
This function reads the global maps of each livestock density, resizes it, and creates a raster out of it for the
desired scope. The values are in number of animals per sq.km.

Parameters

• paths (dict) – Dictionary including the paths to the global livestock rasters
LS_global and to the output path LS.

• param (dict) – Dictionary including the desired resolution, the coordinates of the
bounding box of the spatial scope, and the georeference dictionary.

Returns The tif files for LS is saved in its respective path, along with its metadata in a JSON
file.

Return type None

lib.input_maps.generate_maps_for_scope(paths, param, multiprocessing)
This function calls the individual functions that generate the maps for the geographic scope.

Parameters

• paths (dict) – Dictionary including the paths.

• param (bool) – Dictionary including the user preferences.

• multiprocessing – Determines if multiprocessing is applied.

Returns The maps are saved directly in the desired paths.

Return type None

lib.input_maps.generate_osm_areas(paths, param)
This function reads the osm land use shapefile, identifies several areas, and excludes pixels around them
based on a user-defined buffers buffer_pixel_amount. It creates a masking raster of boolean values (0 or 1)
for the scope. Zero means the pixel is excluded, one means it is suitable. The function is useful in case there
is a policy to exclude renewable energy projects next to certain type of areas.

Parameters

• paths (dict) – Dictionary including the path to the osm land-use shapefile, and to
the output path BUFFER.

• param (dict) – Dictionary including the user-defined buffers (buffer_pixel_amount)
and the georeference dictionary.

Returns The tif file for BUFFER is saved in its respective path, along with its metadata in a
JSON file.

Return type None

lib.input_maps.generate_protected_areas(paths, param)
This function reads the shapefile of the globally protected areas, adds an attribute whose values are based on
the dictionary of conversion (protected_areas) to identify the protection category, then converts the shapefile
into a raster for the scope. The values are integers from 0 to 10.

Parameters

• paths (dict) – Dictionary including the paths to the shapefile of the globally pro-
tected areas, to the land raster of the scope, and to the output path PA.

• param (dict) – Dictionary including the dictionary of conversion of protection cate-
gories (protected_areas).

3.2. input_maps.py 33

, Release 1.1.0

Returns The tif file for PA is saved in its respective path, along with its metadata in a JSON file.

Return type None

lib.input_maps.generate_protected_areas_offshore(paths, param)
This function reads the shapefile of the globally protected areas, adds an attribute whose values are based on
the dictionary of conversion (protected_areas) to identify the protection category, then converts the shapefile
into a raster for the scope. The values are integers from 0 to 10.

Parameters

• paths (dict) – Dictionary including the paths to the shapefile of the globally pro-
tected areas, to the land raster of the scope, and to the output path PA.

• param (dict) – Dictionary including the dictionary of conversion of protection cate-
gories (protected_areas).

Returns The tif file for PA is saved in its respective path, along with its metadata in a JSON file.

Return type None

lib.input_maps.generate_sea(paths, param)
This function reads the shapefiles of the countries (land areas) and of the exclusive economic zones (sea
areas) within the scope, and creates two rasters out of them.

Parameters

• paths (dict) – Dictionary including the paths LAND and EEZ.

• param (dict) – Dictionary including the geodataframes of the shapefiles, the number
of features, the coordinates of the bounding box of the spatial scope, and the number of
rows and columns.

Returns The tif files for LAND and EEZ are saved in their respective paths, along with their
metadata in JSON files.

Return type None

lib.input_maps.generate_settlements(paths, param)

This function reads the global map of settlements, and creates a raster out of it for the desired scope.
See config.py for more information on the settlements map.

Parameters

• paths (dict) – Dictionary including the paths to the global settlements raster
WSF_global and to the output path WSF.

• param (dict) – Dictionary including the desired resolution, the coordinates of the
bounding box of the spatial scope, and the georeference dictionary.

Returns The tif file for WSF is saved in its respective path, along with its metadata in a JSON
file.

Return type None

lib.input_maps.generate_slope(paths, param, A_TOPO)
This function reads the topography raster for the scope, and creates a raster of slope out of it. The slope is
calculated in percentage, although this can be changed easily at the end of the code.

Parameters

• paths (dict) – Dictionary including the paths to the topography map of the scope
TOPO and to the output path SLOPE.

• param (dict) – Dictionary including the desired resolution, the coordinates of the
bounding box of the spatial scope, and the georeference dictionary.

Returns The tif file for SLOPE is saved in its respective path, along with its metadata in a JSON
file.

34 Chapter 3. Implementation

, Release 1.1.0

Return type None

lib.input_maps.generate_topography(paths, param)
This function reads the tiles that make the global map of topography, picks those that lie completely or
partially in the scope, and creates a raster out of them for the desired scope. The values are in meter.

Parameters

• paths (dict) – Dictionary including the paths to the tiles of the global topography
raster Topo_tiles and to the output path TOPO.

• param (dict) – Dictionary including the desired resolution, the coordinates of the
bounding box of the spatial scope, and the georeference dictionary.

Returns The tif file for TOPO is saved in its respective path, along with its metadata in a JSON
file.

Return type None

lib.input_maps.generate_weather_files(paths, param)
This function reads the daily NetCDF data (from MERRA-2) for SWGDN, SWTDN, T2M, U50m, and
V50m, and saves them in matrices with yearly time series with low spatial resolution. Depending on the
MERRA_correction parameter this function will also call clean_weather_data() to remove data outliers. This
function has to be run only once.

Parameters

• paths (dict) – Dictionary including the paths to the MERRA-2 input files
MERRA_IN, and to the desired output locations for T2M, W50M and CLEARNESS.

• param (dict) – Dictionary including the year, the spatial scope, and the
MERRA_correction parameter.

Returns The files T2M.mat, W50M.mat, and CLEARNESS.mat are saved directly in the de-
fined paths, along with their metadata in JSON files.

Return type None

lib.input_maps.generate_weather_offshore_files(paths, param)
This function reads the daily NetCDF data (from MERRA-2) for U50m, and V50m, and saves them in ma-
trices with yearly time series with low spatial resolution. Depending on the MERRA_correction parameter
this function will also call clean_weather_data() to remove data outliers. This function has to be run only
once.

Parameters

• paths (dict) – Dictionary including the paths to the MERRA-2 input files
MERRA_IN, and to the desired output locations for T2M, W50M and CLEARNESS.

• param (dict) – Dictionary including the year, the spatial scope, and the
MERRA_correction parameter.

Returns The file W50M.mat is saved directly in the defined paths, along with their metadata in
JSON files.

Return type None

3.2. input_maps.py 35

, Release 1.1.0

3.3 potential.py

lib.potential.calc_FLH_solar(hours, args)
This function computes the full-load hours for all valid pixels specified in ind_nz in param. Due to parallel
processing, most of the inputs are collected in the list args.

Parameters

• hours (numpy array) – Filtered day hour ranks in a year (from 0 to 8759).

• args (list) – List of arguments: * param (dict): Dictionary including multiple pa-
rameters such as the status bar limit, the name of the region, and others for calculating
the hourly capacity factors. * tech (str): Name of the technology. * rasterData (dict):
Dictionary of numpy arrays containing land use types, Ross coefficients, albedo co-
efficients, and wind speed correction for every point in reg_ind. * merraData (dict):
Dictionary of numpy arrays containing the weather data for every point in reg_ind.

Return FLH Full-load hours over the year for the technology.

Return type numpy array

lib.potential.calc_FLH_windoff(hours, args)
This function computes the full-load hours for all valid pixels specified in ind_nz in param. Due to parallel
processing, most of the inputs are collected in the list args.

Parameters

• hours (numpy array) – Hour ranks in a year (from 0 to 8759).

• args (list) – List of arguments: * param (dict): Dictionary including multiple pa-
rameters such as the status bar limit, the name of the region, and others for calculating
the hourly capacity factors. * tech (str): Name of the technology. * rasterData (dict):
Dictionary of numpy arrays containing land use types, Ross coefficients, albedo co-
efficients, and wind speed correction for every point in reg_ind. * merraData (dict):
Dictionary of numpy arrays containing the weather data for every point in reg_ind.

Return FLH Full-load hours over the year for the technology.

Return type numpy array

lib.potential.calc_FLH_windon(param, tech, rasterData, merraData, GWA_array, b_xmin,
b_xmax, b_ymin, b_ymax, x_gwa, y_gwa, pixles, list_results)

This function computes the full-load hours for all valid pixels specified in ind_nz in param. Due to parallel
processing, most of the inputs are collected in the list args.

Parameters

• hours (numpy array) – Hour ranks in a year (from 0 to 8759).

• args (list) – List of arguments: * param (dict): Dictionary including multiple pa-
rameters such as the status bar limit, the name of the region, and others for calculating
the hourly capacity factors. * tech (str): Name of the technology. * rasterData (dict):
Dictionary of numpy arrays containing land use types, Ross coefficients, albedo co-
efficients, and wind speed correction for every point in reg_ind. * merraData (dict):
Dictionary of numpy arrays containing the weather data for every point in reg_ind.

Return FLH Full-load hours over the year for the technology.

Return type numpy array

lib.potential.calc_gcr(Crd_all, m_high, n_high, res_desired, GCR)
This function creates a GCR weighting matrix for the desired geographic extent. The sizing of the PV
system is conducted on a user-defined day for a shade-free exposure to the sun during a given number of
hours.

Parameters

36 Chapter 3. Implementation

, Release 1.1.0

• Crd_all (list) – Desired geographic extent of the whole region (north, east, south,
west).

• m_high (int) – Number of rows.

• n_high (int) – Number of columns.

• res_desired (list) – Resolution of the high resolution map.

• GCR (dict) – Dictionary that includes the user-defined day and the duration of the
shade-free period.

Return A_GCR GCR weighting raster.

Return type numpy array

lib.potential.calculate_full_load_hours(paths, param, tech, multiprocessing)
This function calculates the yearly FLH for a technology for all valid pixels in a spatial scope. Valid pixels
are land pixels for WindOn, PV and CSP, and sea pixels for WindOff. The FLH values are calculated by
summing up hourly capacity factors.

Parameters

• paths (dict) – Dictionary of dictionaries containing the paths to the input weather
data, land, sea and land use rasters, and correction rasters.

• param (dict) – Dictionary of dictionaries containing the spatial scope, and technol-
ogy and computation parameters.

• tech (str) – Technology under study.

• multiprocessing (bool) – Determines if the computation uses multiprocessing
(True/False)

Returns The raster of FLH potential is saved as mat and tif files, along with the json metadata
file.

Return type None

lib.potential.get_merra_raster_data(paths, param, tech)
This function returns a tuple of two dictionaries containing weather and correction rasters for specified
technology.

Parameters

• paths (dict) – Dictionary of dictionaries containing the paths to the input weather
and raster data.

• param (dict) – Dictionary of dictionaries containing land use, Ross coefficients,
albedo, and Hellmann coefficients.

• tech (str) – Technology under study.

Return (merraData, rasterData) Dictionaries for the weather data and for the correction data.

Return type tuple (dict, dict)

lib.potential.mask_potential_maps(paths, param, tech)
This function first reads the rasters for land use, slope, bathymetry, and protected areas for the scope. Based
on user-defined assumptions on their suitabilities, it generates a masking raster to exclude the unsuitable
pixels. Both the mask itself and the masked potential rasters can be saved.

Parameters

• paths (dict) – Dictionary of dictionaries containing user-defined parameters for
masking, protected areas, and landuse.

• param (dict) – Dictionary of dictionaries containing the paths to the land use, pro-
tected areas, slope and bathymetry, in addition to output paths.

• tech (str) – Technology under study.

3.3. potential.py 37

, Release 1.1.0

Returns The files for the mask and the masked FLH are saved as tif and mat files, along with
their metadata json files.

Return type None

lib.potential.redistribution_array(param, merraData, i, j, xmin, xmax, ymin, ymax,
GWA_array, x_gwa, y_gwa)

What does this function do?

Parameters

• param –

• merraData –

• i –

• j –

• xmin –

• xmax –

• ymin –

• ymax –

• GWA_array –

• x_gwa –

• y_gwa –

Return reMerra

Return type numpy array

Aim: Increase the resolution of the MERRA wind data by using Global Wind Atlas data. For this reason,
the low resolution MERRA data is redistributed by the energy distribution of the higher resolution
Global Wind Atlas data

Algorithm:

1) Import wind data from Global Wind Atlas

2) Select pixels that are within one MERRA pixle

3) Convert from wind speed to energy

4) Redistribute MERRA data

ToDo: Where do the borders/limits come from? -> not shape file ?!?

lib.potential.report_potentials(paths, param, tech)
This function reads the FLH files and the subregion shapefile, and creates a CSV file containing various
statistics:

• Available number of pixels, before and after masking

• Available area in in km2

• FLH mean, median, max, min values, before and after masking

• FLH standard deviation after masking

• Power Potential in GW, before and after weighting

• Energy Potential in TWh in total, after weighting, and after masking and weighting

• Sorted sample of FLH values for each region

Parameters

38 Chapter 3. Implementation

, Release 1.1.0

• paths (dict) – Dictionary of dictionaries containing the paths to FLH, Masking,
Weighting, and Area rasters.

• param (dict) – Dictionary of dictionaries containing technology parameters and sam-
pling parameters.

• tech (str) – Technology under study.

Returns The CSV files with the report and the sorted FLH are saved directly in the desired
paths, along with the corresponding metadata in JSON files.

Return type None

lib.potential.sampled_sorting(Raster, sampling)
This function returns a list with a defined length of sorted values sampled from a numpy array.

Parameters

• Raster (numpy array) – Input raster to be sorted.

• sampling (int) – Number of values to be sampled from the raster, defines length of
output list.

Return s List of sorted values sampled from Raster.

Return type list

lib.potential.weight_potential_maps(paths, param, tech)
This function weights the power potential by including assumptions on the power density and the available
area. Therefore, it reads the rasters for land use and protected areas for the scope. Based on user-defined
assumptions on their availabilities, it generates a weighting raster to exclude the unsuitable pixels. Both the
weight itself and the weighted potential rasters can be saved.

Parameters

• paths (dict) – Dictionary of dictionaries containing user-defined parameters for
weighting, protected areas, and landuse.

• param (dict) – Dictionary of dictionaries containing the paths to the land use, pro-
tected areas, area, in addition to output paths.

• tech (str) – Technology under study.

Returns The files for the weight and the weighted FLH are saved as tif and mat files, along with
their metadata json files.

Return type None

3.4 time_series.py

lib.time_series.calc_TS_solar(hours, args)
This function computes the hourly PV and CSP capacity factor for the desired quantiles.

Parameters

• hours (numpy array) – Hour ranks of the year (from 0 to 8759).

• args (list) – List of arguments:

– param (dict): Dictionary including multiple parameters such as the status bar limit,
the name of the region, and others for calculating the hourly capacity factors.

– tech (str): Name of the technology.

– rasterData (dict): Dictionary of numpy arrays containing land use types, Ross coef-
ficients, albedo coefficients, and wind speed correction for every point in reg_ind.

3.4. time_series.py 39

, Release 1.1.0

– merraData (dict): Dictionary of numpy arrays containing the weather data for every
point in reg_ind.

Return TS Array of time series for the desired quantiles for each subregion.

Return type numpy array

lib.time_series.calc_TS_windoff(hours, args)
This function computes the hourly onshore and offshore wind capacity factor for desired quantiles.

Parameters

• hours (numpy array) – Hour ranks of the year (from 0 to 8759).

• args (list) – List of arguments:

– param (dict): Dictionary including multiple parameters such as the status bar limit,
the name of the region, and others for calculating the hourly capacity factors.

– tech (str): Name of the technology.

– rasterData (dict): Dictionary of numpy arrays containing the wind speed correction
for every point in reg_ind.

– merraData (dict): Dictionary of numpy arrays containing the weather data for every
point in reg_ind.

Return TS Array of time series for the desired quantiles for each subregion.

Return type numpy array

lib.time_series.calc_TS_windon(point, args)
This function computes the hourly onshore and offshore wind capacity factor for desired quantiles.

Parameters

• hours (numpy array) – Hour ranks of the year (from 0 to 8759).

• args (list) – List of arguments:

– param (dict): Dictionary including multiple parameters such as the status bar limit,
the name of the region, and others for calculating the hourly capacity factors.

– tech (str): Name of the technology.

– rasterData (dict): Dictionary of numpy arrays containing the wind speed correction
for every point in reg_ind.

– merraData (dict): Dictionary of numpy arrays containing the weather data for every
point in reg_ind.

Return TS Array of time series for the desired quantiles for each subregion.

Return type numpy array

lib.time_series.combinations_for_time_series(paths, param, tech)
This function reads the list of generated regression coefficients for different hub heights and orientations,
compares it to the user-defined modes and combos and returns a list of lists containing all the available
combinations. The function will return a warning if the user input and the available time series are not
congruent.

Parameters

• paths (dict) – Dictionary of dictionaries containing the paths to the regression out-
put folder.

• param (dict) – Dictionary of dictionaries containing the year, the user defined com-
bos, and subregions name.

• tech (str) – Technology under study.

Return combinations List of combinations of settings to be used in stratified time series.

40 Chapter 3. Implementation

, Release 1.1.0

Return inputfiles List of regression outputs to be used in generating the stratified time series.

Return type tuple (list, list)

Raises

• No coefficients – If regression coefficients are not available, a warning is raised.

• Missing coefficients – If regression coefficients are missing based on user-
defined combos and mode, a warning is raised.

lib.time_series.find_representative_locations(paths, param, tech)
This function reads the masked FLH raster and finds the coordinates and indices of the pixels for the user-
defined quantiles for each region. It creates a shapefile containing the position of those points for each
region, and two MAT files with their coordinates and indices.

Parameters

• paths (dict) – Dictionary of dictionaries containing path values for FLH MAT files,
region statistics, and output paths.

• param (dict) – Dictionary of dictionaries containing the user-defined quantiles, FLH
resolution, and spatial scope.

• tech (str) – Technology under study.

Returns The shapefile with the locations and the two MAT files for the coordinates and the
indices are saved directly in the given paths, along with their corresponding metadata in
JSON files.

Return type None

lib.time_series.generate_time_series_for_regions(paths, param, tech)
This function reads the coefficients obtained from the regression function as well as the generated time
series for the combinations of hub heights / orientations and quantiles, to combine them according to user-
defined modes (quantile combination) and combos (hub heights / orientation combinations) and saves the
results (time series) in a CSV file.

Parameters

• paths (dict) – Dictionary of dictionaries containing the paths to the regression coef-
ficients and the time series.

• param (dict) – Dictionary of dictionaries containing the list of subregions, the modes,
and the combos.

• tech (str) – Technology under study.

Returns The stratified time series for each region, mode, and combo are saved directly in the
given path, along with the metadata in a JSON file.

Return type None

lib.time_series.generate_time_series_for_representative_locations(paths,
param,
tech)

This function generates yearly capacity factor time-series for the technology of choice at quantile locations
generated in find_locations_quantiles. The timeseries are saved in CSV files.

Parameters

• paths (dict) – Dictionary of dictionaries containing paths to coordinate and indices
of the quantile locations.

• param (dict) – Dictionary of dictionaries containing processing parameters.

• tech (str) – Technology under study.

Returns The CSV file with the time series for all subregions and quantiles is saved directly in
the given path, along with the corresponding metadata in a JSON file.

3.4. time_series.py 41

, Release 1.1.0

Return type None

lib.time_series.generate_time_series_for_specific_locations(paths, param,
tech)

This function generates yearly capacity factor time-series for the technology of choice at user defined loca-
tions. The timeseries are saved in CSV files.

Parameters

• paths (dict) – Dictionary of dictionaries containing paths output desired locations.

• param (dict) – Dictionary of dictionaries containing processing parameters, and user-
defined locations.

• tech (str) – Technology under study.

Returns The CSV file with the time series for all subregions and quantiles is saved directly in
the given path, along with the corresponding metadata in a JSON file.

Return type None

Raises

• Point locations not found – Is raised when the dictionary containing the
points names and locations is empty.

• Points outside spatial scope – Some points are not located inside of the
spatial scope, therefore no input maps are available for the calculations

3.5 regression.py

lib.regression.check_regression_model(paths, tech)
This function checks the regression model parameters for nan values, and returns the FLH and TS model
dataframes. If missing values are present in the input CSV files, the users are prompted if they wish to
continue or can modify the corresponding files.

Parameters

• paths (dict) – Dictionary of dictionaries containing the paths to the FLH and TS
model regression CSV files.

• tech (str) – Technology under study.

Return (FLH, TS_reg) Tuple of pandas dataframes for FLH and TS.

Return type Tuple of pandas dataframes

lib.regression.clean_FLH_regression(paths, param)
This function creates a CSV file containing the model FLH used for regression. If the region is present in
the IRENA database, then the FLH are extracted directly from there. In case it is not present, a place holder
for the regions is written in the csv file and it is the user’s responsibility to fill in an appropriate value. The
function will warn the user, and print all regions that are left blank.

Parameters

• param (dict) – Dictionary of dictionaries containing the list of regions.

• paths (dict) – Dictionary of dictionaries containing the paths to IRENA_summary,
IRENA_dict.

Return missing List of string of the missing regions. The CSV file for the the FLH needed for
the regression is saved directly in the given path, along with the corresponding metadata in
a JSON file.

Return type list of str

Raises Missing Regions – No FLH values exist for certain regions.

42 Chapter 3. Implementation

, Release 1.1.0

lib.regression.clean_TS_regression(paths, param, tech)
This function creates a CSV file containing the model time series used for regression. If the region is
present in the EMHIRES text files then the TS is extracted directly from it. If the region is not present in
the EMHIRES text files, the highest FLH generated TS is used instead and is scaled to match IRENA FLH
if the IRENA FLH are available.

Parameters

• paths (dict) – Dictionary containing paths to EMHIRES text files.

• param (dict) – Dictionary containing the FLH_regression dataframe, list of subre-
gions contained in shapefile, and year.

Returns The time series used for the regression are saved directly in the given path, along with
the corresponding metadata in a JSON file.

Return type None

Raises

• Missing FLH – FLH values are missing for at least one region. No scaling is applied
to the time series for those regions.

• Missing EMHIRES – EMHIRES database is missing, generated timeseries will be
used as model for all regions.

lib.regression.combinations_for_regression(paths, param, tech)
This function reads the list of generated time series for different hub heights and orientations, compares it
to the user-defined combinations and returns a list of lists containing all the available combinations. The
function will return a warning if the user input and the available time series are not congruent.

Parameters

• paths (dict) – Dictionary of dictionaries containing the paths to the regional analysis
output folder.

• param (dict) – Dictionary of dictionaries containing the subregions name, year, and
user-defined combinations.

• tech (str) – Technology under study.

Return combinations List of combinations for regression.

Return type list

Raises

• missing data – If no time series are available for this technology, a warning is
raised.

• missing combination – If a hub height or orientation is missing based on user-
defined combinations, a warning is raised.

lib.regression.get_regression_coefficients(paths, param, tech)
This function solves the following optimization problem: A combination of quantiles, hub heights or orien-
tations is to be found, so that the error to a given historical time series (e.g. from EMHIRES for European
countries) is minimized, while constraining the FLH to match a given value (for example from IRENA).
The settings of the combinations can be defined by the user.

The function starts by identifying the existing settings (hub heights, orientations) and quantiles. If the
combinations of time series requested by the user cannot be found, a warning is raised.

It later runs the optimization and identifies the subregions for which a solution was found. If the optimization
is infeasible (too high or too low FLH values compared to the reference to be matched), the time series with
the closest FLH to the reference value is used in the final output.

The output consists of coefficients between 0 and 1 that could be multiplied later with the individual time
series in time_series.generate_stratified_timeseries. The sum of the coefficients for
each combination is equal to 1.

3.5. regression.py 43

, Release 1.1.0

Parameters

• paths (dict) – Dictionary including the paths to the time series for each subregion,
technology setting, and quantile, to the output paths for the coefficients.

• param (dict) – Dictionary including the dictionary of regression parameters, quan-
tiles, and year.

• tech (str) – Technology under study.

Returns The regression parameters (e.g. IRENA FLH and EMHIRES TS) are copied under
regression_in folder, and the regression coefficients are saved in a CSV file under regres-
sion_out folder, along with the metadata in a JSON file.

Return type None

Raises

• Missing Data – No time series present for technology tech.

• Missing Data for Setting – Missing time series for desired settings (hub
heights / orientations).

lib.regression.pyomo_regression_model()
This function returns an abstract pyomo model of a constrained least square problem for time series fitting
to match model FLHs and minimize difference error with model time series.

Return model Abstract pyomo model.

Return type pyomo object

lib.regression.read_generated_TS(paths, param, tech, settings, subregion)
This function returns a dictionary containing the available time series generated by the script based on the
desired technology and settings.

Parameters

• paths (dict) – Dictionary including output folder for regional analysis.

• param (dict) – Dictionary including list of subregions and year.

• tech (str) – Technology under study.

• settings – List of lists containing setting combinations.

• subregion (str) – Name of the subregion.

Return GenTS Dictionary of time series indexed by setting and quantile.

Return type dict

lib.regression.regmodel_load_data(paths, param, tech, settings, subregion)
This function returns a dictionary used to initialize a pyomo abstract model for the regression analysis of
each region.

Parameters

• paths (dict) – Dictionary of dictionaries containing the paths to the CSV time series
files.

• param (dict) – Dictionary of dictionaries contating IRENA’s region list, FLHs and
EMHIRES model timeseries.

• tech (str) – Technology under study.

• settings (list) – List of all the settings (hub heights/orientations) to be used in the
regression.

• subregion (str) – Name of subregion.

Return data Dictionary containing regression parameters.

Return type dict

44 Chapter 3. Implementation

, Release 1.1.0

Helping functions for the models are included in correction_functions.py, spatial_functions.
py, and physical_models.py.

3.6 correction_functions.py

lib.correction_functions.clean_IRENA_summary(paths, param)
This function reads the IRENA database, format the output for selected regions and computes the FLH
based on the installed capacity and yearly energy production. The results are saved in CSV file.

Parameters

• param (dict) – Dictionary of dictionaries containing list of subregions, and year.

• paths (dict) – Dictionary of dictionaries containing the paths to the IRENA country
name dictionary, and IRENA database.

Returns The CSV file containing the summary of IRENA data for the countries within the scope
is saved directly in the desired path, along with the corresponding metadata in a JSON file.

Return type None

lib.correction_functions.clean_weather_data(p, paths, param)
This function detects data outliers in the weather input .mat files. An outlier is a data point, for which
the absolute value of the difference between the yearly average value and the mean of the direct neighbors
(Moore neighborhood) is higher than a user-defined threshold MERRA_correction_factor. It replaces the
hourly values with the hourly values of the mean of the neighbors, and overwrites the original .mat file.

Parameters

• paths (dict) – Dictionary including the path to the weather .mat files.

• param (dict) – Dictionary including the threshold value MERRA_correction_factor.

Returns The file weather .mat files are overwritten after the correction.

Return type None

lib.correction_functions.generate_wind_correction(paths, param)
This function creates a matrix of correction factors for onshore and/or offshore wind. There are different
types of correction:

• Gradient correction: Adjusts for the hub height of the wind turbines, based on the Hellmann coeffi-
cients of each land use type. This correction applies always.

• Resolution correction: Performs a redistribution of wind speed when increasing the resolution based
on land use types, while ensuring that the average of each MERRA-2 cell at 50m is still the same. This
correction is optional, and is activated if res_correction is 1. If not activated, the same value from the
low resolution is repeated.

• Topographic/Orographic correction: Takes into account the elevation of the terrain, because MERRA-
2 usually underestimates the wind speed in mountains. This correction is optional, uses data from
the Global Wind Atlas for all countries in the scope, and is activated only for onshore wind if
topo_correction is 1

Parameters

• paths (dict) – Dictionary of dictionaries containing the paths to the land, land use,
and topography rasters, and to the output files CORR_ON and CORR_OFF.

• param (dict) – Dictionary of dictionaries containing user-preferences regarding the
wind correction, landuse, hub height, weather and desired resolutions.

Returns The rasters for wind correction CORR_ON and/or CORR_OFF are saved directly in
the user-defined paths, along with their metadata in JSON files.

Return type None

3.6. correction_functions.py 45

, Release 1.1.0

3.7 spatial_functions.py

lib.spatial_functions.adjust_resolution(array, res_data, res_desired, aggfun=None)
description

lib.spatial_functions.aggregate_x_dim(array, res_data, res_desired, aggfun)
description

lib.spatial_functions.aggregate_y_dim(array, res_data, res_desired, aggfun)
description

lib.spatial_functions.array2raster(newRasterfn, rasterOrigin, pixelWidth, pixelHeight,
array)

This function saves array to geotiff raster format based on EPSG 4326.

Parameters

• newRasterfn (string) – Output path of the raster.

• rasterOrigin (list of two floats) – Latitude and longitude of the North-
western corner of the raster.

• pixelWidth (integer) – Pixel width (might be negative).

• pixelHeight (integer) – Pixel height (might be negative).

• array (numpy array) – Array to be converted into a raster.

Returns The raster file will be saved in the desired path newRasterfn.

Return type None

lib.spatial_functions.calc_geotiff(Crd_all, res_desired)
This function returns a dictionary containing the georeferencing parameters for geotiff creation, based on
the desired extent and resolution.

Parameters

• Crd_all (numpy array) – Coordinates of the bounding box of the spatial scope.

• res_desired (list) – Desired data resolution in the vertical and horizontal dimen-
sions.

Return GeoRef Georeference dictionary containing RasterOrigin, RasterOrigin_alt, pixel-
Width, and pixelHeight.

Return type dict

lib.spatial_functions.calc_region(region, Crd_reg, res_desired, GeoRef)
This function reads the region geometry, and returns a masking raster equal to 1 for pixels within and 0
outside of the region.

Parameters

• region (Geopandas series) – Region geometry

• Crd_reg (list) – Coordinates of the region

• res_desired (list) – Desired high resolution of the output raster

• GeoRef (dict) – Georeference dictionary containing RasterOrigin, RasterOrigin_alt,
pixelWidth, and pixelHeight.

Return A_region Masking raster of the region.

Return type numpy array

lib.spatial_functions.crd2ind(Crd_points, Crd_all, resolution)
This function converts latitude and longitude of points in high resolution rasters into indices.

Parameters

46 Chapter 3. Implementation

, Release 1.1.0

• Crd_points (tuple of arrays) – Coordinates of the points in the vertical and
horizontal dimensions.

• Crd_all (numpy array) – Array of coordinates of the bounding box of the spatial
scope.

• resolution (list) – Data resolution in the vertical and horizontal dimensions.

Return Ind_points Tuple of arrays of indices in the vertical and horizontal axes.

Return type list of arrays

lib.spatial_functions.crd_merra(Crd_regions, res_weather)
This function calculates coordinates of the bounding box covering MERRA-2 data.

Parameters

• Crd_regions (numpy array) – Coordinates of the bounding boxes of the regions.

• res_weather (list) – Weather data resolution.

Return Crd Coordinates of the bounding box covering MERRA-2 data for each region.

Return type numpy array

lib.spatial_functions.define_spatial_scope(scope_shp)
This function reads the spatial scope shapefile and returns its bounding box.

Parameters scope_shp (Geopandas dataframe) – Spatial scope shapefile.

Return box List of the bounding box coordinates.

Return type list

lib.spatial_functions.ind2crd(Ind_points, Crd_all, resolution)
This function converts indices of points in high resolution rasters into longitude and latitude coordinates.

Parameters

• Ind_points (tuple of arrays) – Tuple of arrays of indices in the vertical and
horizontal axes.

• Crd_all (numpy array) – Array of coordinates of the bounding box of the spatial
scope.

• resolution (list) – Data resolution in the vertical and horizontal dimensions.

Return Crd_points Coordinates of the points in the vertical and horizontal dimensions.

Return type list of arrays

lib.spatial_functions.ind_global(Crd, res_desired)
This function converts longitude and latitude coordinates into indices on a global data scope, where the
origin is at (-90, -180).

Parameters

• Crd (numpy array) – Coordinates to be converted into indices.

• res_desired (list) – Desired resolution in the vertical and horizontal dimensions.

Return Ind Indices on a global data scope.

Return type numpy array

lib.spatial_functions.ind_merra(Crd, Crd_all, res)
This function converts longitude and latitude coordinates into indices within the spatial scope of MERRA-2
data.

Parameters

• Crd (numpy array) – Coordinates to be converted into indices.

• Crd_all (numpy array) – Coordinates of the bounding box of the spatial scope.

3.7. spatial_functions.py 47

, Release 1.1.0

• res (list) – Resolution of the data, for which the indices are produced.

Return Ind Indices within the spatial scope of MERRA-2 data.

Return type numpy array

lib.spatial_functions.subset(A, crd, param)
This function retrieves a subset of the global MERRA-2 coverage based on weather resolution and the
bounding box coordinates of the spatial scope.

Parameters

• A (numpy array) – Weather data on a global scale.

• param (dict) – Dictionary of parameters containing MERRA-2 coverage and the
name of the region.

Return subset The subset of the weather data contained in the bounding box of spatial_scope.

Return type numpy array

3.8 physical_models.py

lib.physical_models.angles(hour, reg_ind, Crd_all, res_desired, orient)
This function creates multiple matrices for the whole scope, that represent the incidence, hour angles, dec-
lination, elevation, tilt, azimuth and orientation angles of every pixel with the desired resolution.

Parameters

• hour (int) – Hour rank in a year (from 0 to 8759).

• reg_ind (tuple of arrays) – indices of valid pixels within the spatial scope
(pixels on land).

• Crd_all (list) – Coordinates of the bounding box of the spatial scope.

• res_desired (list) – Desired high resolution in degrees.

• orient (int) – Azimuth orientation of the module in degrees.

Return (phi, omega, delta, alpha, beta, azi, orientation) Rasters of latitude, hour, declina-
tion, elevation, tilt, azimuth and orientation angles.

Return type tuple of arrays

lib.physical_models.calc_CF_solar(hour, reg_ind, param, merraData, rasterData, tech)
This function computes the hourly capacity factor for PV and CSP technologies for all valid pixels within
the spatial scope for a given hour.

Parameters

• hour (integer) – Hour within the year (from 0 to 8759).

• reg_ind (tuple of arrays) – indices of valid pixels within the spatial scope
(pixels on land).

• param (dict) – Dictionary including the desired resolution, the coordinates of the
bounding box of the spatial scope, and technology parameters.

• merraData (dict) – Dictionary of numpy arrays containing the weather data for
every point in reg_ind.

• rasterData (dict) – Dictionary of numpy arrays containing land use types, Ross
coefficients, albedo coefficients, and wind speed correction for every point in reg_ind.

• tech (str) – Name of the technology ('PV' or 'CSP').

Return (CF_pv, CF_csp) the capacity factors for all the points during that hour for PV and
CSP.

48 Chapter 3. Implementation

, Release 1.1.0

Return type tuple (numpy array, numpy array)

lib.physical_models.calc_CF_windoff(hour, reg_ind, turbine, m, n, merraData, rasterData)
This function computes the hourly capacity factor for onshore and offshore wind for all valid pixels within
the spatial scope for a given hour.

Parameters

• hour (integer) – Hour within the year (from 0 to 8759).

• reg_ind (tuple of arrays) – indices of valid pixels within the spatial scope
(pixels on land for onshore wind, on sea for offshore wind).

• turbine (dict) – Dictionary including the turbine parameters (cut-in, cut-off and
rated wind speed).

• m (int) – number of rows.

• n (int) – number of columns.

• merraData (dict) – Dictionary of numpy arrays containing the weather data for
every point in reg_ind.

• rasterData (dict) – Dictionary of numpy arrays containing the wind speed cor-
rection for every point in reg_ind.

Return CF Capacity factors for all the valid points during that hour.

Return type numpy array

lib.physical_models.calc_CF_windon(hours, turbine, merraData, rasterData)
This function computes the hourly capacity factor for onshore and offshore wind for all valid pixels within
the spatial scope for a given hour.

Parameters

• hour (integer) – Hour within the year (from 0 to 8759).

• reg_ind (tuple of arrays) – indices of valid pixels within the spatial scope
(pixels on land for onshore wind, on sea for offshore wind).

• turbine (dict) – Dictionary including the turbine parameters (cut-in, cut-off and
rated wind speed).

• m (int) – number of rows.

• n (int) – number of columns.

• merraData (dict) – Dictionary of numpy arrays containing the weather data for
every point in reg_ind.

• rasterData (dict) – Dictionary of numpy arrays containing the wind speed cor-
rection for every point in reg_ind.

Return CF Capacity factors for all the valid points during that hour.

Return type numpy array

lib.physical_models.coefficients(beta, ratio, R_b, A_i, f)
This function creates three weighting matrices for the spatial scope with the desired resolution, that corre-
spond to the gains/losses caused by tilting to each component of the incident irradiance (direct, diffuse, and
reflected).

Parameters

• beta (numpy array) – Raster of tilt angles.

• ratio (numpy array) – Diffuse fraction of global horizontal solar radiation using
the Erbs model.

• R_b (numpy array) – Ratio of incident beam to horizontal beam in the HDKR
model.

3.8. physical_models.py 49

, Release 1.1.0

• A_i (numpy array) – Anisotropy index for forward scattering circumsolar diffuse
irradiance in the HDKR model.

• f (numpy array) – Modulating factor for horizontal brightening correction.

Return (F_direct, F_diffuse, F_reflected) Rasters of direct, diffuse and reflected ratios of irra-
diance.

Return type tuple of arrays

lib.physical_models.global2diff(k_t, dims)
This function estimates the global-to-diffuse irradiance ratio using the Erb model.

Parameters

• k_t (numpy array) – Raster of clearness indices.

• dims (tuple) – Dimensions of the output (similar to the dimension of the angles).

Return A_ratio Raster of global-to-diffuse irradiance ratios.

Return type numpy array

lib.physical_models.loss(G_tilt_h, TEMP, A_Ross, pv)
This function creates a temperature loss weighting matrix for the spatial scope.

Parameters

• G_tilt_h (numpy array) – Raster of incident irradiance on the tilted panel.

• TEMP (numpy array) – Raster of ambient temperatures in °C

• A_Ross (numpy array) – Raster of Ross coefficients for temperature sensitivity.

• pv (dict) – Dictionary containing PV-specific parameters for loss coefficient and rated
temperature.

Return LOSS_TEMP raster of weighting temperature loss.

Return type numpy array

lib.physical_models.toa_hourly(alpha, hour)
This function returns the top of the atmosphere normal irradiance based on the solar constant, hour rank,
and incidence angle.

Parameters

• alpha (numpy array) – Raster of elevation angles.

• hour (int) – Hour rank of the year (from 0 to 8759).

Return TOA_h Raster of the normal top of the atmosphere irradiance.

Return type numpy array

lib.physical_models.tracking(axis, A_phi, A_alpha, A_beta, A_azimuth)
This function computes the tilt angle and orientation based on the type of tracking, incidence, elevation tilt
and azimuth angles.

Parameters

• axis (int) – Number of tracking axes (0, 1, 2). The value 0 means no tracking (fixed
rack), 1 means single-axis tracking in east-west dimension, and 2 means double-axis
tracking.

• A_phi (numpy array) – Raster of latitude angle.

• A_alpha (numpy array) – Raster of elevation angle.

• A_beta (numpy array) – Raster of tilt angle.

• A_azimuth (numpy array) – Raster of azimuth angle.

50 Chapter 3. Implementation

, Release 1.1.0

Return (A_orient, A_beta) Tuple of rasters for orientationa and tilt angles for specified track-
ing type.

Return type tuple of arrays

Utility functions as well as imported libraries are included in util.py.

3.9 util.py

lib.util.arccosd(digit)
This function calculates the inverse cosine of a number.

Parameters digit (float) – Number between -1 and 1.

Returns The inverse cosine of the number in degrees.

Return type float

lib.util.arcsind(digit)
This function calculates the inverse sine of a number.

Parameters digit (float) – Number between -1 and 1.

Returns The inverse sine of the number in degrees.

Return type float

lib.util.arctand(digit)
This function calculates the inverse tangent of a number.

Parameters digit (float) – Number.

Returns The inverse tangent of the number in degrees.

Return type float

lib.util.changeExt2tif(filepath)
This function changes the extension of a file path to .tif.

Parameters filepath (str) – Path to the file.

Returns New path with .tif as extension.

Return type str

lib.util.changem(A, newval, oldval)
This function replaces existing values oldval in a data array A by new values newval.

oldval and newval must have the same size.

Parameters

• A (numpy array) – Input matrix.

• newval (numpy array) – Vector of new values to be set.

• oldval (numpy array) – Vector of old values to be replaced.

Return Out The updated array.

Return type numpy array

lib.util.char_range(c1, c2)
This function creates a generator to iterate between the characters c1 and c2, including the latter.

Parameters

• c1 (char) – First character in the iteration.

• c2 (char) – Last character in the iteration (included).

3.9. util.py 51

, Release 1.1.0

Returns Generator to iterate between the characters c1 and c2.

Return type python generator

lib.util.cosd(alpha)
This function calculates the cosine of an angle in degrees.

Parameters alpha (float) – Angle in degrees.

Returns The cosine of the angle.

Return type float

lib.util.create_json(filepath, param, param_keys, paths, paths_keys)
Creates a metadata JSON file containing information about the file in filepath by storing the relevant keys
from both the param and path dictionaries.

Parameters

• filepath (string) – Path to the file for which the JSON file will be created.

• param (dict) – Dictionary of dictionaries containing the user input parameters and
intermediate outputs.

• param_keys (list of strings) – Keys of the parameters to be extracted from
the param dictionary and saved into the JSON file.

• paths (dict) – Dictionary of dictionaries containing the paths for all files.

• paths_keys (list of strings) – Keys of the paths to be extracted from the
paths dictionary and saved into the JSON file.

Returns The JSON file will be saved in the desired path filepath.

Return type None

lib.util.display_progress(message, progress_stat)
This function displays a progress bar for long computations. To be used as part of a loop or with multipro-
cessing.

Parameters

• message (string) – Message to be displayed with the progress bar.

• progress_stat (tuple(int, int)) – Tuple containing the total length of the
calculation and the current status or progress.

Returns The status bar is printed.

Return type None

lib.util.field_exists(field_name, shp_path)
This function returns whether the specified field exists or not in the shapefile linked by a path.

Parameters

• field_name (str) – Name of the field to be checked for.

• shp_path (str) – Path to the shapefile.

Returns True if it exists or False if it doesn’t exist.

Return type bool

lib.util.hourofmonth()
This function calculates the rank within a year of the first hour of each month.

Returns The rank of the first hour of each month.

Return type list

lib.util.ind2sub(array_shape, ind)
This function converts linear indices to subscripts.

52 Chapter 3. Implementation

, Release 1.1.0

Parameters

• array_shape (tuple (int, int)) – Dimensions of the array (# of rows, # of
columns).

• ind – Linear index.

Returns Tuple of indices in each dimension (row index, column index).

Return type tuple(int, int)

lib.util.intersection(lst1, lst2)
This function calculates the intersection between two lists.

Parameters

• lst1 (list) – First list of elements.

• lst2 (list) – Second list of elements.

Return lst3 The unique elements that exist in both lists, without repetition.

Return type list

lib.util.limit_cpu(check)
This functions sets the priority of a process for CPU time and RAM allocation at two levels: average or
below average.

Parameters check (boolean) – If True, the process is set a below average priority rating
allowing other programs to run undisturbed. if False, the process is given the same priority
as all other user processes currently running on the machine, leading to faster calculation
times.

Returns The priority of the process is set.

Return type None

lib.util.resizem(A_in, row_new, col_new)
This function resizes regular data grid, by copying and pasting parts of the original array.

Parameters

• A_in (numpy array) – Input matrix.

• row_new (integer) – New number of rows.

• col_new (integer) – New number of columns.

Return A_out Resized matrix.

Return type numpy array

lib.util.sind(alpha)
This function calculates the sine of an angle in degrees.

Parameters alpha (float) – Angle in degrees.

Returns The sine of the angle.

Return type float

lib.util.sumnorm_MERRA2(A, m, n, res_low, res_desired)
This function calculates the average of high resolution data if it is aggregated into a lower resolution.

Parameters

• A (numpy array) – High-resolution data.

• m (int) – Number of rows in the low resolution.

• n (int) – Number of columns in the low resolution.

3.9. util.py 53

, Release 1.1.0

• res_low (numpy array) – Numpy array with with two numbers. The first number
is the resolution in the vertical dimension (in degrees of latitude), the second is for the
horizontal dimension (in degrees of longitude).

• res_desired (numpy array) – Numpy array with with two numbers. The first
number is the resolution in the vertical dimension (in degrees of latitude), the second is
for the horizontal dimension (in degrees of longitude).

Return s Aggregated average of A on the low resolution.

Return type numpy array

lib.util.tand(alpha)
This function calculates the tangent of an angle in degrees.

Parameters alpha (float) – Angle in degrees.

Returns The tangent of the angle.

Return type float

lib.util.timecheck(*args)
This function prints information about the progress of the script by displaying the function currently running,
and optionally an input message, with a corresponding timestamp. If more than one argument is passed to
the function, it will raise an exception.

Parameters args (string) – Message to be displayed with the function name and the times-
tamp (optional).

Returns The time stamp is printed.

Return type None

Raise Too many arguments have been passed to the function, the maximum is only one string.

54 Chapter 3. Implementation

Bibliography

[1] MERRA-2: File Specification. Note No. 9. URL: http://gmao.gsfc.nasa.gov/pubs/office_notes.

[2] Danish Wind Industry Association. Wind energy reference manual. 2003.

[3] John A. Duffie and William A. Beckman. Solar engineering of thermal processes. Wiley, Hoboken, New Jer-
sey, fourth edition edition, 2013. ISBN 9780470873663. URL: http://site.ebrary.com/lib/alltitles/docDetail.
action?docID=10683270, doi:10.1002/9781118671603.

[4] D. G. Erbs, S. A. Klein, and J. A. Duffie. Estimation of the diffuse radiation fraction for hourly, daily and
monthly-average global radiation. Solar Energy, 28(4):293–302, 1982. doi:10.1016/0038-092X(82)90302-4.

[5] Ronald Gelaro, Will McCarty, Max J. Suárez, Ricardo Todling, Andrea Molod, Lawrence Takacs, Cynthia A.
Randles, Anton Darmenov, Michael G. Bosilovich, Rolf Reichle, Krzysztof Wargan, Lawrence Coy, Richard
Cullather, Clara Draper, Santha Akella, Virginie Buchard, Austin Conaty, Arlindo M. da Silva, Wei Gu,
Gi-Kong Kim, Randal Koster, Robert Lucchesi, Dagmar Merkova, Jon Eric Nielsen, Gary Partyka, Steven
Pawson, William Putman, Michele Rienecker, Siegfried D. Schubert, Meta Sienkiewicz, and Bin Zhao. The
modern-era retrospective analysis for research and applications, version 2 (merra-2). Journal of Climate,
30(14):5419–5454, 2017. doi:10.1175/JCLI-D-16-0758.1.

[6] Martin Kaltschmitt, Wolfgang Streicher, and Andreas Wiese. Renewable Energy: Technology, and Envi-
ronment Economics. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 9783540709473.
URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10229340, doi:10.1007/3-540-70949-5.

[7] S. A. Klein. Calculation of monthly average insolation on tilted surfaces. Solar Energy, 19(4):325–329, 1977.
doi:10.1016/0038-092X(77)90001-9.

[8] Gilbert M. Masters. Renewable and efficient electric power systems. Wiley-Interscience, Hoboken, 2004.
ISBN 9780471280606. doi:10.1002/0471668826.

[9] Laura Maturi, Giorgio Belluardo, David Moser, and Matteo Del Buono. Bipv system performance and effi-
ciency drops: overview on pv module temperature conditions of different module types. Energy Procedia,
48:1311–1319, 2014. doi:10.1016/j.egypro.2014.02.148.

[10] Douglas T. Reindl. Estimating Diffuse Radiation On Horizontal Surfaces And Total Radiation On Tilted
Surfaces: Thesis. PhD thesis, 1988. URL: https://minds.wisconsin.edu/bitstream/1793/47660/1/0001.pdf.

[11] K. Scharmer and J. Greif. The European solar radiation atlas: Database and Exploitation Software. Vol-
ume 2. Presses de l Ecole des Mines, Paris, 2000. ISBN 2911762223.

[12] B. Stine William and Geyer Michael. Powerfromthesun.net. 2014.

[13] F. Marion William and P. Dobos Aron. Rotation angle for the optimum tracking of one-axis trackers. 2013.
URL: https://www.nrel.gov/docs/fy13osti/58891.pdf.

55

http://gmao.gsfc.nasa.gov/pubs/office_notes.
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10683270
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10683270
https://doi.org/10.1002/9781118671603
https://doi.org/10.1016/0038-092X(82)90302-4
https://doi.org/10.1175/JCLI-D-16-0758.1
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10229340
https://doi.org/10.1007/3-540-70949-5
https://doi.org/10.1016/0038-092X(77)90001-9
https://doi.org/10.1002/0471668826
https://doi.org/10.1016/j.egypro.2014.02.148
https://minds.wisconsin.edu/bitstream/1793/47660/1/0001.pdf
https://www.nrel.gov/docs/fy13osti/58891.pdf

, Release 1.1.0

56 Bibliography

Python Module Index

c
config, 2

l
lib.correction_functions, 45
lib.input_maps, 31
lib.physical_models, 48
lib.potential, 36
lib.regression, 42
lib.spatial_functions, 46
lib.time_series, 39
lib.util, 51

57

, Release 1.1.0

58 Python Module Index

Index

A
adjust_resolution() (in module

lib.spatial_functions), 46
aggregate_x_dim() (in module

lib.spatial_functions), 46
aggregate_y_dim() (in module

lib.spatial_functions), 46
angles() (in module lib.physical_models), 48
arccosd() (in module lib.util), 51
arcsind() (in module lib.util), 51
arctand() (in module lib.util), 51
array2raster() (in module lib.spatial_functions),

46

C
calc_CF_solar() (in module lib.physical_models),

48
calc_CF_windoff() (in module

lib.physical_models), 49
calc_CF_windon() (in module

lib.physical_models), 49
calc_FLH_solar() (in module lib.potential), 36
calc_FLH_windoff() (in module lib.potential), 36
calc_FLH_windon() (in module lib.potential), 36
calc_gcr() (in module lib.potential), 36
calc_geotiff() (in module lib.spatial_functions),

46
calc_region() (in module lib.spatial_functions),

46
calc_TS_solar() (in module lib.time_series), 39
calc_TS_windoff() (in module lib.time_series),

40
calc_TS_windon() (in module lib.time_series), 40
calculate_full_load_hours() (in module

lib.potential), 37
changeExt2tif() (in module lib.util), 51
changem() (in module lib.util), 51
char_range() (in module lib.util), 51
check_regression_model() (in module

lib.regression), 42
clean_FLH_regression() (in module

lib.regression), 42
clean_IRENA_summary() (in module

lib.correction_functions), 45
clean_TS_regression() (in module

lib.regression), 42
clean_weather_data() (in module

lib.correction_functions), 45

coefficients() (in module lib.physical_models),
49

combinations_for_regression() (in module
lib.regression), 43

combinations_for_time_series() (in mod-
ule lib.time_series), 40

config
module, 2

configuration() (in module config), 2
cosd() (in module lib.util), 52
crd2ind() (in module lib.spatial_functions), 46
crd_merra() (in module lib.spatial_functions), 47
create_json() (in module lib.util), 52

D
define_spatial_scope() (in module

lib.spatial_functions), 47
display_progress() (in module lib.util), 52
downloadGWA() (in module lib.input_maps), 31

F
field_exists() (in module lib.util), 52
find_representative_locations() (in mod-

ule lib.time_series), 41

G
general_settings() (in module config), 2
generate_area() (in module lib.input_maps), 31
generate_area_offshore() (in module

lib.input_maps), 31
generate_array_coordinates() (in module

lib.input_maps), 32
generate_bathymetry() (in module

lib.input_maps), 32
generate_land() (in module lib.input_maps), 32
generate_landuse() (in module lib.input_maps),

32
generate_livestock() (in module

lib.input_maps), 33
generate_maps_for_scope() (in module

lib.input_maps), 33
generate_osm_areas() (in module

lib.input_maps), 33
generate_protected_areas() (in module

lib.input_maps), 33
generate_protected_areas_offshore()

(in module lib.input_maps), 34
generate_sea() (in module lib.input_maps), 34

59

, Release 1.1.0

generate_settlements() (in module
lib.input_maps), 34

generate_slope() (in module lib.input_maps), 34
generate_time_series_for_regions() (in

module lib.time_series), 41
generate_time_series_for_representative_locations()

(in module lib.time_series), 41
generate_time_series_for_specific_locations()

(in module lib.time_series), 42
generate_topography() (in module

lib.input_maps), 35
generate_weather_files() (in module

lib.input_maps), 35
generate_weather_offshore_files() (in

module lib.input_maps), 35
generate_wind_correction() (in module

lib.correction_functions), 45
get_merra_raster_data() (in module

lib.potential), 37
get_regression_coefficients() (in module

lib.regression), 43
global2diff() (in module lib.physical_models), 50

H
hourofmonth() (in module lib.util), 52

I
ind2crd() (in module lib.spatial_functions), 47
ind2sub() (in module lib.util), 52
ind_global() (in module lib.spatial_functions), 47
ind_merra() (in module lib.spatial_functions), 47
intersection() (in module lib.util), 53

L
lib.correction_functions

module, 45
lib.input_maps

module, 31
lib.physical_models

module, 48
lib.potential

module, 36
lib.regression

module, 42
lib.spatial_functions

module, 46
lib.time_series

module, 39
lib.util

module, 51
limit_cpu() (in module lib.util), 53
loss() (in module lib.physical_models), 50

M
mask_potential_maps() (in module

lib.potential), 37
module

config, 2

lib.correction_functions, 45
lib.input_maps, 31
lib.physical_models, 48
lib.potential, 36
lib.regression, 42
lib.spatial_functions, 46
lib.time_series, 39
lib.util, 51

P
pyomo_regression_model() (in module

lib.regression), 44

R
read_generated_TS() (in module lib.regression),

44
redistribution_array() (in module

lib.potential), 38
regmodel_load_data() (in module

lib.regression), 44
report_potentials() (in module lib.potential),

38
resizem() (in module lib.util), 53

S
sampled_sorting() (in module lib.potential), 39
sind() (in module lib.util), 53
subset() (in module lib.spatial_functions), 48
sumnorm_MERRA2() (in module lib.util), 53

T
tand() (in module lib.util), 54
timecheck() (in module lib.util), 54
toa_hourly() (in module lib.physical_models), 50
tracking() (in module lib.physical_models), 50

W
weight_potential_maps() (in module

lib.potential), 39

60 Index

	User manual
	Installation
	config.py
	Main configuration function
	User preferences
	Paths

	runme.py
	Recommended input sources
	Weather data from MERRA-2
	Raster of Mean Wind Speed
	Raster of land use
	Shapefile of the region of interest
	Shapefile of countries
	Shapefile of Exclusive Economic Zones (EEZ)
	Shapefile of Internal Waters
	Raster of topography / elevation data
	Raster of bathymetry
	Shapefile of protected areas
	Airports Coordinates
	Shapefiles from OSM data
	Raster of Settlement Footprint
	Shapefile of HydroLakes
	Shapefile of HydroRivers
	Data of Crop Production
	Data of Forestry Production
	Shapefile of Livestock density

	Recommended workflow
	Input raster maps
	Potential maps and reports
	Time series for quantiles and user-defined locations
	Regression
	Stratified time series

	Theory
	Solar
	Solar Angles
	Solar Power
	PV
	CSP

	Wind
	Wind Speed
	Wind Shear
	Wind Power

	Implementation
	initialization.py
	input_maps.py
	potential.py
	time_series.py
	regression.py
	correction_functions.py
	spatial_functions.py
	physical_models.py
	util.py

	Bibliography
	Python Module Index
	Index

